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Abstract: The projector operator formalism  is used to deduce the relationships between all the 

quantities involved in the high velocity frame transformations obeying suitable kinematical and 

symmetry conditions. A characterization of Marinov transformation is pointed out in terms of the 

spatial transformation matrix and its inverse. 

1. Introduction 

The first two papers of this series [1,2], from now on denoted by I and II respectively, develop a 

convenient projector operator formalism which allows us to reformulate the kinematical and 

symmetry conditions used by Mansouri and Sexl [3] for simplifying the frame transformation between 

a privileged observer and a generic inertial one. In so doing we arrived at the final expression for the 

frame transformation between inertial observers, which depends on three arbitrary functions.  

 

To further analyze the resulting theory, it is convenient to have at our disposal a collection of formulas 

that link the quantities involved in the four dimensional transformation and its inverse. As a first step 

we write down, in full generality, all the relations between such quantities without any “a priori” 

restrictions. Then we specialized all calculations to the case when the spatial transformation matrix 

takes on the form of Mansoury and Sexl, that we deduced in II. In this case we are able to determine 

the explicit form of the inverse four dimensional transformation as well as the inverse matrix of the 

spatial part. With the aid of these formulas, it is possible to deduce a peculiar characterization of 

Marinov transformation [4] 

 

In the sequel we freely use notations and results proved in I and II. 

2. The frame transformation 

Consider two inertial frames: the absolute inertial frame A  and a generic inertial frame F  . Denote by 
x  and X  the space-time coordinates of  A   and  F  , respectively. In the following Greek indices 

run from 0 to 3, Latin indices from 1 to 3 and ctx 0 , cTX 0 ; in principle the constant c  need not 

be the light speed in vacuum, it suffices that c  is an universal constant speed. Let iv  be the velocity 

of  F   with respect to A , namely the velocity measured by A  of the points at rest in F . Analogously 

we denote by iV  the velocity of  A  with respect to F . 

 

In ref [5] we proved that the most general transformation between two inertial frames is linear; hence 

we can write 



 2 

 

(2.1)    


 xX    

 

On appealing to the velocity addition theorem we proved that [5] 

 

(2.2)    











j
ii

j

ScNV

cHN

/


   

 

Therefore the transformation (2.1) can be split as 

 

(2.3a)    tNVxSX ij
j

ii    

(2.3b)    NtxHT k
k   

 

Consider now the inverse transformation 

 

(2.4)    


  Xx    

 

and set 

 

(2.5)    











j
ii

j

scnv

chn

/


   

 

Accordingly the transformation (2.4) can be split as 

 

(2.6a)    TnvXsx ij
j

ii    

(2.6b)    nTXht k
k   

 

We note that this kind of notation allows us to adopt a duality rule that in any given equation 

majuscules and minuscules may be interchanged. Our goal is now that of writing down explicitly the 

conditions that  
  and  

   are the inverse matrices of each other, namely 

 

(2.7)    






        and     







    

 

Starting from the first condition (2.7), a straightforward calculation yields the following relations 

 

(2.8a)   10
0  
        1 k

k vnHNn  

(2.8b)   00  


i        0 k
k

ii vSNV  

(2.8c)   00  j


        0 j
k

kj sHNh  

(2.8d)   0 j
i 
        j

i
j

k
k

i
j

i sShNV   

 

Appealing to the duality argument provides us with the inverse relations 

 

(2.9a)   10
0 
        1 k

kVNhnN  

(2.9b)   00 


i
       0 k

k
ii Vsnv  

(2.9c)   00  j


        0 j
k

kj ShnH  

(2.9d)   0 j
i 
        j

i
j

k
k

i
j

i SsHnv   



 3 

 

Some general consequences can be drawn from eqs. (2.8)-(2.9). Subtracting eq. (2.9a) from eq. (2.8a) 

yields 

 

(2.10)   k
k

k
k VNhvnH   

 

Finally we remark that by means of eq. (2.8b) the transformation (2.3) can be written as  

 

(2.11a)   )( tvxSX jj
j

ii    

(2.11b)  NtxHT k
k   

 

We remark that the form (2.11) of the frame transformation follows from the velocity addition 

theorem and from algebraic considerations only. 

 

As discussed in [3] and revisited in II, further simplifications can be achieved by imposing suitable 

conditions on the transformation matrix j
iS , namely the three kinematical conditions (Kin 1), (Kin 

2), (Kin3) and the rotational invariance around the velocity iv . The conclusion is that the most 

general frame transformation, we shall call Mansouri-Sexl transformation, is singled out by a matrix 

j
iS  given by: 

 

(2.12)  j
i

j
i

j
i

j
i

j
i dbdbdS  )(  

 

where )(vb  and )(vd  are arbitrary functions of v  and j
i  and  j

i  are the parallel and the 

orthogonal projection operators.  

 

Before proceeding it is convenient to recall here the definitions and the properties of such projection 

operators discussed in I. The parallel projector  j
i   and the orthogonal projector  j

i  are given by 

 

(2.13)   
2v

vv j
i

j
i   

(2.14)   
2v

vv j
i

j
i

j
i    

 

Of course they behave as complete set of projectors that is 

 

(1.15a)   j
i

j
k

k
i    

(2.15b)  j
i

j
k

k
i   

(2.15c)   0 j
k

k
i

j
k

k
i  

(2.15d)  j
i

j
i

j
i   

 

as it is easy to prove by direct calculation. Moreover for any vector ia  we set 

 

(2.16a)   
j

j
ii aa ||  

(2.16b)  j
j

ii aa   
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3. Links between the parameters of the Mansouri-Sexl transformation and its 

inverse 

Our goal is now that of exploiting relations (2.8)-(2.9) in order to find the explicit links between the 

various quantities involved in the transformation (2.11) and its inverse by assuming explicitly that eq. 

(2.12) holds true. In the sequel, we first write down the relevant formulas followed by their proof. 

 

(3.1)  ii v
N

b
V  ;   

ii V
b

N
v   

Using eqs. (2.8b) and (2.12) we readily get 0)(  j
j

i
j

ii vdbNV , namely 0 ii vbNV  

which implies eqs. (3.1). 

 

(3.2)  ik
k

i vbvS  ;   ik
k

i VbVS   

Both relations are a straightforward consequence of eq. (2.8b) and eq. (3.1). 

 

(3.3)  
ik

k
i V

b

nN
Vs  ;  

ik
k

i v
b

nN
vs   

Both relations are a straightforward consequence of eq. (2.9b) and eq. (3.1). 

 

(3.4a)  
||||
ii H

b

n
h  ,  

  ii H
d

n
h  

(3.4b)  
||||
ii h

n

b
H  ,  

  ii h
n

d
H  

Substituting eq. (2.12) into eq. (2.9c) and using eq. (2.15d) we obtain 

0)()(0)(  i
k

i
k

kii
k

i
k

i
k

i
k

ki dbhHndbhHn  

In view of definitions (2.16) we can write 0
||||

 
iiii hdhbHnHn which implies eqs. (3.4). 

 

(3.5)   
 iii H

d

n
H

b

n
h ||

 

This equation is a straightforward consequence of eq. (3.4a). 

 

(3.6)   
 iii h

n

d
h

n

b
H

||
 

This equation is a straightforward consequence of eq. (3.4b). 

 

(3.7)   j
i

j
i

j
i

j
i hv

b

bd

d
s 











 

1
 

Eq. (2.9d) can be written as j
i

j
i

j
k

k
i HvnSs   . Using eqs. (2.12) and (2.13) we can calculate the 

quantity  j
k

k
i Ss : 

j
k

k
i

j
i

j
k

j
k

k
i

j
k

k
i vvs

v

db
sddbdsSs

2
])([


   

which, in view of the second eq. (3.3), namely  ik
k

i vbnNvs )/( , becomes 

j
i

j
i

j
k

k
i

b

nN
dbsdSs  )(  

On using eq (2.9d), written above, and recalling that, in view of eq. (2.8a) , k
k vHnN  /1 , we get 
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



























 j

ik
kj

i
j

i
j

i
j

i
j

i
j

i vH
nb

dbn
Hvn

db

nN
dbHvn

d
s

1)(1
)(

1
  











































2
)(

1)(1

v

vv
HdbHbv

bd

n

b

bd

d
vH

b

dbn

b

db
Hvn

d

j
k

kj
i

j
i

j
i

j
ik

kj
i

j
i

j
i 

 

)(
1

)(
1 ||||||||

jj
i

j
i

j
i

jjjj
i

j
i

j
i H

b

n
H

d

n
v

b

bd

d
HdHbHbHbv

bd

n

b

bd

d
























  

 

On account of eq. (3.5) we easily recognize that the last term within round bracket is nothing but  

jh . Thus eq. (3.7) is fully proved. 

4. Properties of the spatial matrices 

First of all, let us express the matrix j
is  in a form equivalent to eq. (3.7). Splitting ih  as  ii hh||  and 

using eq. (2.15d), we can write eq. (3.7) as follows 

 

 







 j

i
j

i
k

k
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i hvhv
db

hvhv
b

d

d
s )(

111 ||
 









 j

i
j

i
j

i
k

k hv
d

hv
b

11
 

 

Using the second of eq. (3.1) and eq. (2.9a) we find that 

bnNhVNbhVbNbhvb k
k

k
k

k
k /)1)(/1()/()/1()/1(  . Therefore we arrive at the formula 

 

 j
i

j
i

j
i

j
i hv

db

nN
s

1
 

 

To sum up the results obtained so far we write here the final expressions for the matrices j
iS  and j

is  

 

(4.1)   j
i

j
i

j
i dbS   

(4.2)   
 j

i
j

i
j

i
j

i hv
db

nN
s

1
 

 

On account of the properties (2.15a, b, c) of the two projectors j
i  and j

i  it is quite easy to write 

down the inverse matrices of  j
iS  and j

is . Explicitly we have 

 

(4.3)   j
i

j
i

j
i

db
S  11

)( 1
 

(4.4)   
  j

i
j

i
j

i
j

i hv
nN

bd
d

nN

b
s )( 1

 

 

A remark is now in order. Note first that eq. (4.3) can be written as 
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















j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

b

bd

ddbd

bd

ddbdb
S 

111
)(

1111
)( 1

 

 

Comparison of this relation with eq. (3.7) shows that condition j
i

j
i sS  )( 1  holds true if and only if  

0jh , namely if and only if the transformation is a Marinov transformation [4]. 

 

Finally we note that, in view of eqs (2.16), for any vector ia  we have 

 

(4.5)   iij
j

i adabaS  ||  

(4.6)   
j

j
i

j
iij

j
i ahv

d
a

b

nN
as 








 

1
||  

 

Of course such relations embody formulas (3.2), (3.3). 
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