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Abstract

Artificial Potential Fields (APF) [41[3] Jor robatic path
planning were firsdy introdwced by Khatib ax a solution
af the basic planning problem, where o single poing
shaped robot with no kinematic constraints has to move
fram a starting paint to o goal, in presence of fived
chstacles.

In thiz paper, we present a mathematical tool usefid for
dealing with Ariificial Potentia! Fields in configuration
spaces [6] of different kinds of complax robotic s¥shems,
such as manipulation structures and coaperating mobile
robat teams, alvo (in both cases) in narrow ervirormens
and with agents of arbitrary shape, [n peneral, a
mathematical function U describing an APF will be
defined on some kind of measwre of scalur distance @ of
the actual state of the system {fully described by the
Lagrangian coordinates vector o) from the nearest
collision configuration in the C-Space. In order to
apply, in gecordance to the APF paradigtn, a method of
mininuan search in U {thar can be a simple gradiant
descent ar @ more sophisticated method guided by the
gradiens iselfl. we have obviously to compute the
groadient af the patential Junction

a ., _ U2l dola)  if the caleidus af the first part
- Uplg))= = :

o e g

af this derivative is banal  only depending on the
definition af [(p) . the calewlus af the second part,
depending from the geomerry of the ohjects involved, is
a very complax tosk,

{n arder to salve this probiem, in the following sections
we thus infreduce a definition of the distance
MEASUFE () i the C-Space and o meihod for its

gradient evaluation in a given configuration. Then, we
alse present the results of the application of this method
io the problem of path planming for a stz joint planar
manipulator in presence of obstacles, using our gradient
expression as a base for a potential gutded variational
planning algorithm.

1 Introduction

A path planning problem in a robotic system can
have a very high level of complexity [3]. For example,
we can think about sets of manipulators mounted on
mobile robetic vehicles moving in two or three
dimensions. They could operate on ahjects of any shape
and dimension, in presence of moving obstacles [1]. A
further complication can be given by the presence of
several robotic agents that have to perform cooperative
behaviours,

A popular method o deal with this complexity
consists in considering a low complexity robotic path
planning  problem  (the  “basic  motion planning
problem™) and find efficient and relizhle solutions o i,
In a second step, we have o extend these solutions to
more  and  more  complex  environments, in oan
incremental way.

The APF method for the basic motion planning
problem has its origin in the analogy with the
electrostatic field theory, The model assumes that the
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fargel exerts an attractive force on the robot, and the
obstacles excrt a repulsive force on it,

Thus, the law of motion of the robot can be scen as
a descent of the gradient of the potential feld {, which
is given by the sum af a repulsive field U, generated by
obstacles and an atteactive feld 0, gencrated by the
target. The motion planning is performed in iterative
way at each step, the antificial foree gig). ~viig)
ohtained from the potentinl function is taken as the most
promising direction for the robot to move to,

This method is abviously affected by the problem of
lecal minima [2], and several methods are been
proposed in literature [T][8] to deal with this problem; in
this case, we are generally talking about APF guided
methods.

However, the problem of escaping from  local
minima ¢xceeds the task of the present article, that is
focused to provide a general method to explicit compute
the generalized repulsive force E., in the C-Space of the

system,

2 The gradient of an APF in a complex
robotic system

2.1 The shortest distance between two agents

Consider a couple of rigid bodies 4, (k=i where

i=fand iy=0,... N ) extracted from o set of & similar
ohjects moving in a three-dimensional space described
by a fixed Cartesian coordinate system (3, %7, 7). On

introducing the rigid body rest frame (£2,.x v,z the
motion of each 4, is suitably described by six
Lagrangian coordinates XV Zp By, Where
X,.1,. %, denote the components {in the fixed frame) of
the vector position , of the origin o, namely
€y =iy - And g, @ are the usual Euler angles.

[eseribe the boundary of A, in the rest frame by
its parametric representation x=r, 04,00 where the
parameters £ o vary in soitable real intervals. Now,
we can write the equation of the boundary of A, in the
fixed frame in the form x5 01=€, +ri2m-

OF course, dug to the motion of the body Ay » the
veclor ¥ (g, gy depends also on the Lagrangian
coordinates that individuate the relative position of the

resl frame with respect to the fixed frame, We make this
dependence explicit by writing

Nl e Zeowe o de e e b= €3+l b £

The components g » po di 1 inthe Gxed frame

are related to the components evaluated in the rest frame
through the formula

rwlwe B Sam) falea )
Al B B G =R[||“'.-"ju'5‘; rbflfg.?h:l.
LR Y T ) ﬁ:(fnfh}j

in

where gy, 8, 4 denotes the ratation matrix

cosp, —simp, O
R[L"",,I'?“-Fﬂ]: H_-{‘r"'l Ir, (8, R, (4, )= sing,  cosp, O
(2]
0 0 1
IF 1 0 0 Jeosdy -sing, 0
0 cosdh, —sind, | sing cosg 0
L0 sindl,  cosd, [0 L |

that implics

Nl B 2w b Een = (X, T, ,2:]1-

Tl ) (3)
+R|:|r"r||3hl'p.1 {’g[*_-:h-'?n}

Ve lg. M)

The distance vector 4, between an arbitrary point of
the boundary of 4 and an arbitrary point of the
boundary of 4, is given by the ohvious relation

d, =X 080 -X 000
which takes the explicit form
A i B 5, ) =G+ 1)1, 1) ()

as shown in figure 1,

Figure 1. Shortest distance,

We now introduce the 65 Lagrangian coordinates
component algebraic vector g
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Q= (i) = (5
bk O A I RS PP P -.Mf?ﬁ}

that is able to represent the entire system configuration
in the C-Space. On assuming that the boundaries of 4

and 4 are ' functions (this is not restrictive, because
i

in a real case each object boundary can be approximated
by such a function with arbitrary precision), the shortest
distance between the two bodies is achieved when
o, is minimal. Since d, 15 a function of &m0,

this happens when

2 =g —n- %

3 4= 5@, 4,0 =0 !
Of course this condition yields points of minimum,

maximum and of inflection: it 15 implicitly understood

that we refer to the points of absolute minimum, Since

Gy _on, M, o oand My Oy My 3 the

a5 4L an, dy, ag, 8, dy, dn,

previous relations imply the conditions

du-']__':” d i =0 (7
S " [

Such a relutions have a straightforward geometric
interpretation: the shortest distance is achieved when the
distance vector is orthogonal to both the tangent planes
to the boundarics of . The mathematical result is

summarized by saving that the previous relation
provides the values 7 5, which individuate the points

of shortest distance. Explicitly the shortest distance is
achieved when
& = EX 1200, 8,8, X .1 .2, v,.0,8): (%)

M =ﬂl{'1"|- PP O PN P SN T -

From now on, with a slight abuse of notation, we
assume that all the relevant quantities are evaluated in
correspondence of such values £, 0, and we can thus

define the shortest distance between A and 4 as

y = 080,20 1, E g ) ()

1.2 The repulsive force

The overall repulsive force g exerted on the
configuration g is computed as the anti-gradient of the

repulsive potential U,

F,=% F = —E.,,[—au”‘a[:"{"]:jr -

(10

Bl [P{qJ I 8, | . da,
|.- L_ = . trﬂv [P,, ‘_J
- o o oq
To compute the repulsive force F, that acts on two
generic ohjects 4 and 4 . we have o caloulate the

derivative of 2, With respect 1o g

(=8

dp, 2 od 11
S I T vﬁf (1L}

fy g 2

The repulsive force F, between 4 and A, iz 50 a

formal 6% component column vector whose components
Fre=|, 6N 8re defined as

== .
)2

e {I’y]d c[[E +r§qa{l" “r :I]

{12)

The present task s that of evaluating § explicitly,
We calculate first the derivatives

a, 2D, am6-5..8) (13
&,

d M}. a5 6

Yo,

abserving that

Ay PeT e (65, Eif -5 ) {14}

A,

Due to the abvious relations

i, =0, a=0f-5_ 64, [L5}

2,

ﬁ:ﬂl @=hi=5 0

B,

and using (7) we get

GU.M;uv.iﬂ.,.d‘.?r_'ﬂ:n (1)
o 85, B, gy ed,

a=0-5. 0

dy-—am’”’}: l,-f&'?‘:“ uh.-w gy, D)
éq, 5, &g, an, &,
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) L Flc = ’_M{d” e w]m‘i[pr,}
Phus, the quantities 7 reduce to ¥, (233
i |
T Ia
Fy= hr{p } - '—f(. +r), @=H-5 A (18] RIEDRIBIR (IR (BIRT(#)N
v e, Tz
. d . i : We have
-".,. =r"rrp[,|l-'r|‘l}_‘.?“(‘-’f 1), o= =5 6
Py o, . ‘0o (}1 ”
A straightforward calculation yields %Rrimh 0 o-1]| ¢
' o010
d, a0 ; o
= i, ﬂi “'5(*- 50 we conclude with the formula
¥ Bi-1
19 I
=1 {d_v.ﬂ.f"f- WAy on an, ]_{ : I';“'=-—L"'Lp"’1".“'u'=: 25
e Py @ 08, Bfais Py O s Ay
o
=7, (m, )2
Py

having used again relations (7). Analogouosly
o {P ] L
)

B -, Lm?'f

Fie

I

. . o
"I‘:J_‘ = {"-"; Lﬂ" :ler I

o

(20

Consider now the quantity g% and remember that
:rl ¥

Haz = W, Since 60, - (e in view of (1) and
-2
emploving matrix notation, we abtain
FoT _w,. _r..}F'_ -
! y a, (21}
. a8 m)
U an
p{»‘-" :I'[ .yr urdw:' [VI:IR{'? 1A | n ki)
! relg.m)

hiaving wsed once more relation (7). On inverting
relation (17 we have

e ~" . e (22}
n = B 6,8 )
Te J! T

Hence, formula {19} becomes

where 1, (4=1,...

where e, denotes the unit vector of the & axis, Explicit
calculation gives

!.:;u ! =_LL[’”|"},-I J-tll-ﬂ M

(28]
where, in the usual formalism of Euler angles, n, and
¢ denote the unit vector of the node axis and of the z

axis of the rest frame associated to the hody 4

To sum up all the results obtained so far we can
wrile F oas the column vecior

(27
P Umle 00 dy dy dy nxd, e,
¥ Py ] Bi-0) -3 sied ek B2
nud, N onwed -8 0 O mdy —dy —dy
Bial [N B+l CYEY PR TR | Ei-3 ai-1
—rl,wlil\l_-q:J —rﬂ‘d.,'N_, —r‘,:-u["I 1] o '
8y -1 Bi-1 & Byl By

The six components of the generalized force g in

places J act on A, configuration, whilst those in places §
acton configuration.

Finally, we can express the resultant foree F,, @5

= ¥F,

,_n\

{28)
f.-.-

NV ) is the generalized six components

force that acts on A, configuration. In particular, may be
interesting to focus that the fourth, fifth and sixth
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components in each of the column vectors are the
components of the total torgue acting on A, thus

introducing a rotational effect that changes agent attitude
(w8, ) according to the repulsive feld, with the
purpose of keeping the agent far from  contact
configurations in the C-Space.

As we can see, alse if our reasoning is based on the
cenfiguration space, the caloulus of the generalized
repulsive force can be decoupled in n distributed
algorithm, where each agent only  reguires  the
knowledge about the minimum distance vectars between
itsell and other agents and obstacles.

All information required by the algorithm can be
deducted, at each time step, directly from the workspace
by simple geometric considerations, without explicitly
performing the task (unmanageable in the majority of
real cases) of mapping the obstacles in the C-Space.

2.3 The distance in the C-Space
A configuration absiacle 0 is defined as follows

), = lpeC-Space: 4 (plmdpl=ol 5 et Nie

[29)
v =U.M_x-h;“’v

where 4 is the union set ol all the fixed obstacles in the

Work Space, and g4, are the ¥ agems. Motice that

we consider collision configurations not only particular
configurations in which we have contact between an
agent and a fixed obstacle, bul also configurations in
which a collision happens between two agents. The
impossibility of mapping obstacles directly in the -
Space, derives direetly from the necessity of taking into
aceount all the configurations in which an agent
becomes an obstacle for other agents.

62 is the wnion of all the sets of configurations
in which only two objects collide (ie. a couple of agents
or a couple agent-ohstacle). In fact, the configurations in
which there is a contemporary collision amaong three or
more chjects are implicitly considered, since they are a
subset of the configurations in which only two agents
collide,

W'e could define the distance o of the system from
0 as the distance between the configuration o and the

closest collision configuration belonging to O in the -

Space. Following this definition, we should assume

p:l‘l‘ii:ﬂ:ﬂ J and consequently compute the repulsive
¥ ?

v

potential ¢y o oand the repulsive force g In other
-

waords, we are focusing our attention on the couple of
objects (denoted by ¢ and f) having the most critical
configuration in the sense of the navigation problem.
MNetice that, although the calculus of the repulsive
force exerted on g by the closest collision configuration
is, in most cases, unmanageable in the C-Space, il
results very simple in the work space by simple

geometric considerations, because we have omly to
consider the couple of objects in the most critical
configuration to avoid any collision.

However, to obtain a safer and smoother behaviour,
we can express o in a different way, by considering the
maost eritical configuration for each set Oy, That is, for
each agent, we take into account the minimum distance
from any other ohject within a given distance,

In the following section, we will see that the
definition that we ¢choose for the potential function, that
is responsible of all the forces that act on the system,
implicitly defines the concept of distance in the -
Space.

24 An example repulsive potential funetion

An example of repulsive antificial potential function
with “good properties” that acts between two ohjects A,

and 4 s the following:
:
1 { 1 1 ) (303
. - — <
t-,,\,[.ﬂr}= Jqlxﬁ‘.,l'ﬂ .I‘i‘-:.J P
] oy B

Figure 2. The potential function.

where s is the shorest distance between A and g,
and o is the maximum influence distance, beyond

which there is no inferaction between objects.
Finally, we define o by having appesl to the
superimposition principle for the potential feld ., and,

consequently, for the overall repulsive force F.

r.-'_,[,a}:ZﬁU”l:pujl Lyeld Nz j (31)

According to the definition of the potential function
given in this section, we obtain, with 2 < oy
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L[L_E Sy
e ,;,J ”3LP9 Py ) {32)
LieQ N

1 1 LY tes
Ei.]lz“(m _E}

Az a final remark, we have shown that the choice of
a particular repulsive potential function impligitly
defines a distance function gg) in the configuration
space of the system, i.e. a measure of the distance of the
acual - system configuration  from  a  collision
configuration between agents or between an agent and
an obatacle in the C-Space.

It i possible to demonstrate that in  this
CASE 5 o r‘{!“'lﬂu | thus having a behaviour safer than the

choice of f= mi,ﬁ[pa } Moreowver, as a consequence of
&

the superimposition principle, there will be components
in g for all the couples of objects in mutal dangerous

configuration,

3 An example application to a robotic arm

In the sequence in figure 3, we present the results
ohiained by simulating a & dof planar manipulator that
has to move from a starting o a goal configuration,
avoiding ohstacles on its path.

The mathematical tocls described in the previows
sections are used as a base for a potential guided
variational planning method that minimize a cost
function, defined on the global path of the ma:ispu]slor

A local method to escape from local minima,
inspired to the Micronavigation [7] algorithm, is added
to integrate the pure gradient descent method applicd in
order to minimize the global cost fanction.

Each link of the robolic arm is treated as a separate
agent, with its own shape and kincmatic constraints.,
Non-holonomic constraints are taken into account by
introducing in the cost functicn some repulsive potential
terms, that increases more and more while the system
configuration  get  closer 1o configuration  arcas
prohibited by the constraints,

Figure 3. Robotic arm path planning.

We can observe that the global cost function
minimization method, applied to the problem of the path
planning for the rabotic arm, gives to the system a “look
forward” behaviour, that force the arm to fold on itself
before getting close to the ohstacle,

4 Conclusion

In this paper, we presented a mathematical weol that
can be used as a base for a wide class of potential guided
path planning methods, in a large number of rohotic
structures, as manipulators and more general multi agent
S}fﬁll:mﬁ_

These methods allow to deal with the intrinsic
complexity of the path planning problem for muli
agents (of any shape and in narmow environments) by
decoupling the interactions in distributed algorithms,
and avoid the complexity of interaction mapping in the
C-Space by deducting them directly from the wark
space of the robotic system.

References




Part 8: Planning and control archilectures

[1] ). Barraquand, B. Langlois and 1.0, Latombe "Robot
Maotion Planning with Many Degrees of Freedom
and [Dynamic Constraints”, Robotics Research 3.
MIT Press, pp. 435444, MA, 1985,

[2] 1. Borenstein and Y. Koren "Potential Field Methods
and Their Inherent Limitations for Mobile Robot
Mavigation", FProceedings of the IEEE fnternational
Conference on Robatics and Awtomation, pp. 1398-
1404, 1991,

[3] LF. Canny "The Complexity of Robot Motion
Planning", MIT Press, MA, |988.

[4] 0. Kathib "Real Time Obstacle Avoidance for
Manipulaters and Maobile Robots", farernationa!
Jowrnal of Robotics Research, pp. 90-98, wol. 3,
Mo, 1986,

[5] LC. Latombe "Robot Motion Planning”, Klower
Academic Publisher, MA, 1991,

[6] T. Lowano-Pérez "Spatial Planning: A Configuration
Space Approach”, [EEE Transactions an Camprters,
MIT Press, pp. 108-120, C-32(2), 1983.

[7]M.  Piaggio, A. Sgorbissa and R, Zaccaria
"Micronavigation”, From Amimal To dwimgts § -
Proc. Sixth fat. Conf” on the Simulasion of Adaptive
Bekevior, MIT Press, 200H).

[8] AScalzo, A, Sporbissa and R. Zaccaria "Distributed
Multi  Robot  Reactive MNavigation ", Proc
Digtributed Awtonomons Robatic Systems 5, pp. 267-
276, Fukuoka, 2042,




	a01.png
	a02.png
	a03.png
	a04.png
	a05.png
	a06.png
	a07.png



