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Abstract. The problem of oblique incidence of plane waves on a boundary between two linear media is examined in detail 
especially in connection with generation of evanescent waves. It is shown that, unlike plane waves, evanescent waves are fully 
determined by two functions, which are to be chosen as the Hilbert transform of each other so as to guarantee an appropriate 
behavior of the solution at infinity. When such an approach is contrasted with the theory of discontinuity waves, it turns out 
that the usual information about discontinuities does not suffice for calculating evanescent waves. In conclusion, the oblique 
incidence problem does not admit a consistent answer within the sole framework of discontinuity waves. 

I. Introduction 

The theory  o f  discontinuity wave propagat ion  has at tracted many  researchers mainly because o f  the 
inherent mathematical  r igor [1 ]. However  when this theory is applied to the problem o f  oblique incidence 

on a bounda ry  - or, even worse, to  the problem o f  the interaction between discontinuity waves and shocks - 

some unsuspected drawbacks  and pitfalls arise. To qualify this claim, we first recall that  the general basis 
for  the analysis o f  the oblique incidence o f  a discontinuity wave on a boundary  in presence o f  nonlinearities 

has been dealt with in [2]. Unfor tunately ,  also when the incident wave is a discontinuity wave, it turns out  
that  the theory o f  discontinuity waves is no t  appropria te  if evanescent waves are generated. 

Fo r  definiteness, we recall that, essentially, an evanescent wave is a disturbance which propagates  along 

a direction and whose ampli tude attenuates along a different direction; it is an interesting resul t  that,  for 
hyperbolic  systems, such two directions cannot  be parallel [3]. Especially when informat ion on ampli tude 
at tenuat ion is unimpor tant ,  harmonic  exponential  waves o f  this kind are called inhomogeneous  waves; for  

a tho rough  analysis o f  the properties o f  plane inhomogeneous  waves we refer the interested reader to [3-  
10]. In  order  to suggest explicitly the account  o f  amplitude at tenuation,  in accordance with [11], p. 204, 
we are adopt ing  the term "evanescent  waves".  

Tha t  evanescent waves are relevant for the problem of  oblique incidence o f  plane waves is well known  
in the literature [ 12-20]. With  the aid o f  this background  material, it is the purpose o f  this work  to arrive 
at a closed (formal)  solution o f  the oblique incidence problem under  the sole assumpt ion that  the governing 
equat ions take the fo rm o f  a general linear hyperbolic system. Thus  we are able to show that  the theory o f  
discontinuity waves is no t  capable o f  fully emboding  the oblique incidence problem. To make  the paper  as 
self-consistent as possible, also par t  o f  the background  material will be briefly re-elaborated. 
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The plane of  the paper is as follows. Setting aside nonlinear aspects, a brief rrsum6 of the properties of  
linear plane waves is presented in Section 2, while Section 3 discusses the general features concerning wave 
generation by oblique incidence of a plane wave on a boundary. The main properties of  evanescent waves 
are analyzed in Section 4, where it is proved that, unlike plane waves, two functions are needed for 
determining an evanescent wave. Then, in Section 5, we show that the requirement of  well behavior at 
infinity makes such functions be the Hilbert transform of each other. The comparison with the theory of  
discontinuity waves is performed in Section 6. As a significant result, we definitively prove not only that 
the problem of  oblique incidence cannot be solved with the sole aid of the discontinuity wave theory but 
also that the information on the incident discontinuity does not suffice for calculating the possible evanescent 
waves. Finally, Section 7 is devoted to casting the Stoneley problem [21] within the present framework and 
to pointing out some obstacles concerning nonlinearities. 

2. Plane waves 

Consider a physical system whose behavior is described by the following N linear hyperbolic differential 
equations 

OU+ A~ aU+ Ay OU+ A~ OU=o, (2.1) 
Ot Ox Oy Oz 

where A x, A y, and A z are constant N x N matrices. 
A plane wave, traveling at speed c along the direction n (n-n= 1), is a solution to (2.1) which depends 

on space coordinates x and time t through the single phase variable 

q~(x, t ) = t - n ,  x/c; (2.2) 

in other words we are looking for solutions of the form 

U = U((0) = U ( t - ~ ) .  (2.3) 

Substitution of (2.3) into (2.1) shows that the possible propagation speeds c coincide with the characteristic 
speeds relative to the system (2.1), namely with the roots of  the secular equation 

[A,- cII= 0, (2.4) 

where I stands for the N dimensional identity matrix and A,=AXl ~ +AYcr+AZv, /1, ~r, and v being the 
components of n. Also the column vector U(tp) can be split as 

where ~ is the amplitude while the polarization vector H is a right eigenvector of  the matrix An associated 
with the eigenvalue c, viz a solution to the algebraic system 

(A, - cI)FI = 0. (2.6) 
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Of course both the propagation speed c and the polarization vector H may depend on the propagation 
direction n - this dependence has been analyzed, e.g., in [22]; in the sequel we denote by c(n) and H(n) 
the solutions to (2.4) and (2.6), respectively. 

We point out that the wave front of a plane wave (2.3), namely the surface tp(x, t )=const ,  formally 
possesses all the features of a discontinuity wave compatible with the system (2.1) - see, e.g., [23]. For 
propagation problems, indeed, discontinuity waves prove to be more general because they apply as well to 
differential systems both nonlinear and non-homogeneous. Note, however, that for non-homogeneous 
linear system, the previous results can be recovered in the limit of waves of infinite frequency [23]. 

3. Oblique incidence 

Let the plane y = 0 be the boundary between different media; precisely suppose that a medium M, whose 
behavior is described by the linear hyperbolic system (2.1), occupies the lower half space y~<0, while a 
different medium A~r, filling the upper half space y i> 0, is governed by the linear hyperbolic system 

~(~+ ~x ~fl+ ~y ~O+ ~z a(~ o, 
at a--; = (3.1) 

where ,~x, ,~y, and .~z are constant N x N matrices. 

Suppose that a plane wave, traveling into M along the direction n I at speed c(ni), impinges on the 
boundary y = 0 thereby generating reflected and transmitted waves. Choose the coordinate x so that the 
plane (x, y) is the plane of incidence; accordingly n~ = (/z l, tri, 0 ) , /~  > 0, o'~ > 0, with 

2 2 
/~i + o'~ = 1. (3.2) 

In this case a function ~(n~) will be written as ~t(/l~, o'~). The explicit form of the incident wave is taken 
to be 

Ut =ql~( t Illx + crlYl l-l(llI, tYl) • (3.3) 
C ( # I ,  O" I ) /]  

In full generality we assume that p reflected waves and q transmitted waves are generated and are expressed 
in the form of plane waves as 

Reflected waves: 

l zRx+crRy~.  
uR=qi R t e(pR--l~,-~R) J i l ( l t . ,  ~rn), R= 1 . . . .  ,p;  (3.4) 

Transmitted waves: 

\ ~(/lr, t Y T ) /  
(3.5) 

In (3.5) the function ?(/z, tr) and the column vector/-I(/z, tr) denote characteristic speeds and the polariza- 
tion vectors, relative to the medium h~r, expressed in terms of the propagation direction. 
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As is well known [2, 11, 24], a geometric analysis of  the interaction establishes that the emergent modes 
are determined by Snell's law which states that an emergent wave, traveling along the direction (/2, O-, 0) 

at speed c(/2, O-), can be generated provided that 

/ 2 ~  _ /2R _ /2r . (3.6) 
C(/2I, O-t) C(/2R, O'R) O(/2T, O'T) 

Note that the quantity O- is subjected to the only constraint (3.2) ; hence the reflection-transmission pattern 
is not unique. To restore uniqueness we must impose the requirement of  causality; to this purpose the 
literature bears evidence of  different statements concerning causality - see, e.g., [2, 21, 24]. Things can be 
even more complicated when evanescent waves are present [25]; therefore we shall appeal to causality as 

soon as we need it. 
So as to evaluate the amplitudes of  the emergent waves determined by Snell's law (3.6), we remark that 

both systems (2.1) and (3.1) are conservative and that the boundary y = 0 acts as a strong discontinuity 
for the field variables. This leads us to assume that the fields on both sides are connected by the generalized 
Rankine-Hugoniot  conditions [26]. The conservative form for the system (2.1) is 

~U ~ ~ 
- - + - -  (AxU) + ffyy (AYU) +~z (AZU)=O' 
Ot ~3x 

hence, the generalized Rankine-Hugoniot  conditions establish that, for y = 0, 
p q 

AYUIq- Z AYUR= Z AYUT" (3 .7 )  
R=I T=I 

In view of  (3.3) (3.5) condition (3.7) becomes 
p q 
~, AYlI(/2R, (~R)~R((P O) -- E AYI~-I(/2T(TT)~T((pO)+AY/-/(/21' ° ' I ) ~ I ( ( P ° ) = 0 ;  (3 .8 )  

R=I T=I 

note that, owing to Snell's law (3.6), the argument of all amplitudes coincide with the quantity q)o = t -x /2 i /  

c(/2i, O-i ). 
Suppose now that Snell's law (3.6) gives rise only to real values of/2 subject to the condition/2 ~< 1 ; then we 

say that all the emergent waves are real. Accordingly, the causality condition can be stated mathematically in 
the following way: on assuming that the propagation speeds are positive, we must choose [2] 

As to the amplitudes of  the emergent waves, we must suppose also that the system (3.8) admits a unique 
solution for the p + q quantities ~//n and q~r. Note, however, that this is not the case for grazing incidence 

in linear elastic crystals [27]. 

4. Evanescent  waves  

So far all the emergent waves are characterized by a quantity/2 which was assumed to be real and such 
that /2 ~< 1. Accordingly the quantity O-, calculated from (3.2) was both real and O- ~< 1. However, Snell's 
law often provides us with values of/1 which can be either/2 > 1 or even a complex quantity [28]. In both 
cases O- turns out to be a complex quantity and the corresponding waves do not travel at a characteristic 

speed [3]. 
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To make the analysis more compact, we suppose that the quantity/z,  calculated via Snell's law, takes 
on a complex value. Note first that whenever/1 becomes a complex number - or even when/J > 1 - the 
polarization vectors may involve complex quantities as a consequence of (2.6); in turn the Rankine- 
Hugoniot conditions (3.7) involve complex quantities thereby making the amplitudes complex too. The 
presence of complex quantities renders their meaning not immediate. The guiding idea is that of employing 
such formal complex solutions as a tool for finding explicitly the real evanescent solutions we are looking 
for. 

We alert the reader that the following use of the complex formalism is completely different from the very 
common technique of representing the plane wave solutions in a complex exponential form and stipulating 
that only the real or imaginary part has the actual physical significance. Here, instead, it is the very structure 
of the problem which makes complex quantities unavoidable: our task is that of profiting of such a 
peculiarity for calculating the real evanescent solutions. 

To fix notation we denote the real and imaginary part of a complex quantity V in accordance with the 
formula 

~ =  ~q +i~'2, i=  ~/=i. 

First, look at the phase (2.2). It is a consequence of Snell's law that the ratio between /~ and the 
corresponding propagation speed c = c(/1, o-) is always a real quantity and that 

£ Cl C2 

Accordingly, the phase variable tp takes the formal expression 

~o=t-Plx-ay, 
Cl 

where the quantity a is a shorthand for 

O" ClO" I "]- C20" 2 ClO" 2 - -  C20" 1 
a = - - =  ~-i 2 2 2 2 

C Cl + C2 e l  + C2 

In term of the new variables r and Y, defined by 

r = t - - - x - a l y ,  (4.1) 
Cl 

Y= a2y, (4.2) 

we have 

tp = r - i Y. (4.3) 

In view of (2.3), the appearance of a complex phase (4.3) is here simply interpreted as the suggestion that 
we look for a (real) solution to the system (2.1) in the form U= U(r, Y). Substitution into (2.1) shows 
that the function U(r, Y) must satisfy the system 

A~dU+A~'~U=o, (4.4) 
~r ~Y 
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A~=I-P l  AX-alA y, (4.5) 
el 

A Y= a2hy. (4.6) 

So as to find a solution to the system (4.4), we can profitably employ the presence of complex quantities 
in the following way. As already noticed, the polarization vector H may become complex. Owing to (4.5) 
and (4.6), condition (2.6) implies that the real and imaginary part of the polarization vector satisfy the 
system 

A~I-Ij + A r/-/2 = 0, A r / / l -  A~//2 = 0. (4.7) 

Consider now formally the expression (2.5) where the (possibly complex) function 8/is arbitrary and the 
phase ~0 is given by (4.3). Since 

8 / ( r - i Y ) = 8 / l ( r ,  Y)+is/z(r, Y), 

we can write (2.5) in the form 

U = (8/, + i8/2)(H, + iF/2) = (8/~H, - 8/2/72) + i(q/,H2 + 8/2/7,). (4.8) 

It is a straightforward matter to ascertain that, whatever function 8/we choose, the real and imaginary 
part of (4.8) separately satisfy the system (4.4). To this end, consider the real part of (4.8). Substitution 
into (4.4) yields 

which is satisfied in view of the Cauchy-Riemann conditions 

0~¢1 ~ 0°~2=0 ' 08/2 0~¢1 0 ' -  
Or OY Or OY 

for the complex function 8 / ( r - iY) .  An analogous result holds for the imaginary part of (4.8). Owing to 
the linearity of (4.4), we conclude that the real solution U= U(r, Y) is expressed as a superposition of the 
real and imaginary part of (4.8). 

The present task is now that of applying this result to the problem of the oblique incidence by determining 
the amplitude of the emergent waves through the use of the Rankine-Hugoniot conditions (3.7). Of course, 
the Rankine-Hugoniot conditions must be satisfied by the real solution U= U(r, Y); here, however, we 
insist on taking advantage of the complex formalism by going back to (4.8). Accordingly, the Rankine- 
Hugoniot conditions (3.7) split as 

f" i  A'(8/f/-/f-8/f/-/f)- ~ ~" ~T~~ ~T~~- A (°~ 1/71 - - 8 / 2 / ' / 2 )  q-AYs/II-I I ~--0, 
1 T=I 

q 
A'(8/f/-/f + ~ufnf) - Z 2"(~,~-0; + ~ t ) ,  ~) = 0. 

\ R = I  T=I 

(4.9) 
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Since the solution to the system (4.9) will depend linearly on the amplitude ~ of the incident wave, we set 

~¢R = kRa~/I, ~ T = k r ~ l l ,  (4.10) 

where the constants k R and k r are complex quantities. By substituting (4.10) into (4.9) we arrive at the 
following algebraic system 

fR~ Ay(FI 'k 'RR 
i r = l  (4 .11)  

q 
y R R  R R  

A ( / I 2 k  I ÷ / / l k 2 )  - E /lY(~k~+/I~kzT) =0. 
\Rffil T=I 

which allows us to determine the 2(p + q) quantities kl R, k2 R, k r, and k2 ~. We explicitly assume that the 
system (4.11) admits a unique solution. 

As already remarked, the general solution can be taken as a superposition (with real coefficients) of the 
real and imaginary part of (4.8). However, the real part satisfies (4.9)1 which involves the amplitude of the 
incident wave, whereas the imaginary part satisfies (4.9)2 which is homogeneous. Hence, in this latter case, 
the amplitude of the incident wave does not play any privileged role; accordingly, the imaginary part of 
(4.8) can be determined through relations (4.10) by substituting the incident amplitude qli with an arbitrary 
function ,/r~. In conclusion the general form of the emergent waves can be calculated as follows. For every 
reflected or transmitted wave, define the quantities 0//and f/~ by the formulae 

q/= (k~ + ik2)(ql~ + iql~), ~ = (kl + i k2 ) (~  + i~I) ,  (4.12) 

where the constants k~ and k2 are the relevant values calculated by solving the algebraic system (4.11). 
Then every emergent wave takes the form 

U= (q/i + "//2)//i - (q/2 - f/~)//2 • (4.13) 

It is apparent that, when evanescent waves are generated, the solution depends on the amplitude q/i of 
the incident wave and on an arbitrary function ~ which will be chosen by imposing the regularity of the 
solution. 

5. Hilbert transforms 

In view of (4.12), the solution (4.13) is the real part of a suitable complex N-dimensional column vector, 
precisely 

U = 91[(q/' - i~ pI )k/ /] ,  (5.1) 

where the values of the complex number k, solutions to (4.11), single out the specific emergent wave. In 
accordance with formula (5.1), the regularity of every emergent wave, in the pertinent half space of 
definition, is accounted for through the regularity of the complex quantity qlI _ i~ : ,  as function of r - i Y. 
Fortunately, problems of this kind have been solved in the literature by having recourse to the Hilbert 
transforms. Specifically, the Hilbert transform g(x) of a functionf(x)e L 2 ( - ~ ,  ~ )  is defined by the formula 

g(xl=l p ~ °° f ( x )  dx, 
lr J_ooZ-x 

P denoting a principal value at X =x. In [29], p. 128, the following is proved. 
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Theorem. Let z= x +  iy and let ~ ( x )  be a complex function o f  the real variable x belonging to L2(-oo,  oo). 

Then ~ ( x )  is the limit as z--* x o f  an analytic function ~ (x ) ,  regular for y > O, such that 

f_ °14~(x+iy)l  2 d x < g ,  
c o  

K being a positive constant, i f  and only i f  q)(x) = f ( x )  - ig(x), wheref(x)  and g(x) are the Hilbert transforms 

o f  each other. 

Suppose that ~/' belongs to L2(-oe ,  oe). A proper application of this result establishes that the choice of  
the function ~/F ~ as the Hilbert transform of  the amplitude q/~ of  the incident wave makes the complex 
function q / i _  i ~  into an analytic function of  the complex variable r -  i Y which is regular in the domain 
Y< 0. Consequently, the regular behavior of  the emergent waves results in a restriction on the sign of the 
quantity a2 appearing in (4.2): reflected waves, defined in the lower half space, require a2 > 0, whereas 
transmitted waves, traveling in the upper half space, force a2 < 0. 

We emphasize that the physical requirement of  a regular behavior of  the emergent waves also restores 
the uniqueness of the solution because the function ~e ~I is uniquely selected by the necessary and sufficient 
condition of  the previous theorem. This reciprocal link between regularity at infinity and uniqueness is 
peculiar of  the presence of  an evanescent wave. As a matter of face, uniqueness of real waves do not imply 
any regularity hypothesis on the amplitude q/i of the incident wave. 

Plane exponential waves follow at once from our general approach by noticing that cos ~ and - s in  ~ are 
conjugate functions [29]. Thus, our results provide a further motivation for the convenient use of the 

complex exponential function. 

6. The problem of discontinuity waves 

As already remarked at the end of  Section 2, in the case of linear homogeneous systems the surfaces of  
constant phase are mathematically equivalent to discontinuity waves and even to shocks. Specifically, as 
discontinuities do [30], such surfaces travel at a characteristic speed, determined by the determinantal 
condition (2.4), and the polarization vectors, solutions to the algebraic system (2.6), are exactly the right 
eigenvectors of the standard theory of discontinuity waves [31]. The very difference between plane waves 
and discontinuity waves is that a plane wave is fully determined when its amplitude, as a function of  the 
phase, is known; on the contrary, discontinuity waves do not require such a detailed information. Indeed 
their equivalence stems from the circumstance that, for linear systems, the amplitude of  a plane wave does 
not play any role as far as its propagation is concerned. 

Differently, evanescent waves select two distinguished planes, 

r -- const, Y= const, 

which do not depend on the detailed expression (4.13). Of  course, the explicit form (4.13) can be arrived 
at by the procedure exhibited in Section 4, which only requires the choice of  a regular (complex) function 
q / o f  a single variable. Also, evanescent waves always travel at a speed which is not characteristic - see [3]. 
As a remarkable consequence, evanescent waves never represent discontinuities. 

This paper examined a physical problem where evanescent waves are of  vital importance, namely the 
oblique incidence of  a plane wave on a boundary. Indeed, Section 4 and 5 show that calculation of  the 
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amplitudes of the emergent waves requires the account of possible evanescent waves. Owing to the equiva- 
lence between plane waves and discontinuities, the same is true when the incident wave is a discontinuity 
wave. Unfortunately, in this latter case the discontinuity wave does not provide any information on the 
amplitude q/x of the associated plane wave; therefore it is not possible to determine the explicit form (4.13) 
of the emergent evanescent waves. Accordingly, we draw the conclusion that such kind of problems cannot 
be solved within the sole framework of discontinuity waves, as announced at the very beginning. 

7. Final remarks 

The general features of oblique incidence of a plane wave on an interface between two linear media have 
been analyzed in detail. Now we aim at proving that it is also possible to frame the Stoneley problem [21] 
in this context. Roughly speaking, the Stoneley problem can be viewed as an oblique incidence problem 
where no incident wave is present. With this interpretation, the relevant solution to (2.1) is assumed to be 
of the form U(r, Y) where now we have 

r=t-2x-a ly ,  Y=a2y, 

where ~,, a l ,  and a2 are real quantities to be determined. Conditions on such quantities follow from the 
solvability of the linear systems (4.7) and (4.9), with q/I=0.  The Stoneley problem admits a solution of  
the form (4.13) provided that the solvability conditions are compatible with real values of ~., a~, and a2. 

Finally, we briefly discuss the important case of nonlinear evolution systems to point out a few intrinsic 
difficulties. In essence, nonlinearity plays a twofold role. First, calculation of evanescent waves is not so 
clear and straightforward also because of the lack of a sort of Hilbert transform technique valid for non- 
linear problems. Second, genuine nonlinearity, in the Lax sense [32], makes the amplitude of a discontinuity 
wave blow up in a finite time, called the critical time. Accordingly, when the incident wave is a discontinuity 
wave, its amplitude, as well as the amplitude of the emergent waves, can blow up in a finite time thereby 
rendering the problem intrinsically ill posed. It seems that this point has been overlooked in the literature 
[2, 24, 33]. Although of formidable difficulty, we believe that the problem of oblique incidence in presence 
of nonlinearity deserves further special attention and analysis. 
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