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A general procedure is applied for finding the possible variational principle of a given
nonlinear system of partial differential equations. In particular, attention is focused on
Hamiltonian homogeneous cosmologies and gravitational solitons. In the first case, it is
found that a variational principle exists if and only if the model is of class A, thus comple-
menting previous results of MacCallum and Taub. In the second case, it is shown that the
pertinent system arises from a variational principle; furthermore, the explicit form of the
Lagrangian is given. Owing to the structure of the Lagrangian an outstanding first integral

is determined.

I. INTRODUCTION

There are a number of features weighing in favor
of variational formulations versus their local coun-
terparts: unification of diverse fields, methods for
approximating or finding the solution, connection
between symmetries and conservation laws. More-
over, it is a general belief that a Lagrangian is more
fundamental than the resulting Euler-Lagrange
equations; this happens, for example, in Feynman’s
path integral of quantum-mechanical systems. It is
then hardly surprising that the search for a La-
grangian corresponding to a given system of equa-
tions (inverse problem) has received so wide an at-
tention.! In particular, Vainberg’s theorem specifies
the conditions under which a system of equations
admits a variational derivation. Furthermore, if
such conditions are met, Vainberg’s theorem yields
an operative procedure to determine the desired
functional. How this theorem is effective has been
shown extensively in a previous paper’ concerning
various topics pertaining to continuum (nonrela-
tivistic) physics.

It is the aim of this paper to examine two out-
standing topics of relativity from the inverse-
problem standpoint by appealing again to
Vainberg’s theorem. First, Hamiltonian cosmology
has been widely used for explicating complicated
motions of the universe; one of the most striking re-
sults of the Hamiltonian cosmology is that the
dynamics of some types of universe is shown to be
equivalent to that of very simple mechanical sys-
tems.> However, in connection with homogeneous
cosmologies, troubles arise to such an extent that
the death of Hamiltonian cosmology has been
claimed.* On the basis of this motivation, here we
revisit homogeneous cosmologies from the inverse-
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problem viewpoint; our analysis will confirm de-
cisively known results on the subject. Second, the
search for soliton solutions of Einstein’s equations
is paid more and more attention mainly because the
underlying technique provides a powerful tool for
finding broad classes of solutions with a large de-
gree of freedom and varying physical content. Fur-
ther, up to now no equation having a soliton solu-
tion has been shown not to be the local counterpart
of some variational problem. This suggests that we
look at the Einstein soliton equation® with the pur-
pose of arriving at its possible variational account;
in fact, we will succeed in determining the explicit
expression for the Lagrangian.

The relativistic fluid as well is a challenging sub-
ject for a variational investigation. As to the Eu-
lerian description, Vainberg’s theorem allows us to
conclude that Schutz’s paper® is a satisfactory
answer to the problem. As to the Lagrangian
description, instead, new difficulties arise which
make its study beyond the scope of this paper.

II. POTENTIALNESS OF A SYSTEM
OF DIFFERENTIAL EQUATIONS

For later reference, in this section we gather the
essentials of Vainberg’s theorem and its conse-
quences relevant to the case under consideration;
the reader desiring a detailed analysis of the subject
is referred to Refs. 1 and 2 and references therein.

Let X be a Hilbert space of functions from a
domain & CR" into an m-dimensional vector space
V and let a centered dot denote the inner product on
V. According to Vainberg’s theorem, a necessary
and sufficient condition for a (nonlinear) operator
N:X—X to be the gradient of a functional (poten-
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tialness) in a ball B C X is that the Gateaux differen-
tial DN(- | -) satisfies

J,DNw|h)ykdo= [ DN(u|k)hdv .1

for every h,k€EX and every u €B. Moreover, if
(2.1) is satisfied, then the Lagrangian (density) L (u)
of Nis given by

1
L(w)=(u —uo)" [ N(uo+Mu —ug))dA .
22)

It is worth writing down a necessary and suffi-
cient condition for (2.1) to be true. Specifically, let
N be expressed by the system of second-order dif-
ferential equations

Fau®u® pu® pp,xP)=0 (2.3)

in the unknown functions u 2 on the n variables x?,
p=1,...,n. A comma denotes partial differentia-
tion while 4 and B run over a suitable set of indices;
for example, A=1,....m or A=(i])),
i,j=1,...,m. The system (2.3) meets the potential-
ness condition (2.1) if and only if

9 )
u”,,  ou”

9 9 9

f:;‘ + ff -2 ’:B k*hP=0, (2.4)
du”, odu’, U’y | g

ofa Ofp afp afp KAn®
du?  dut  |out, |, |duty |,
=0,

for every set of admissible quantities k4,25, The
following sections deliver a straightforward applica-
tion of (2.4) to homogeneous cosmologies and gravi-
tational solitons.

According to Vainberg’s theorem the indices 4,B
need to be tensorial in character. If, however, the
tensor character is in order, then we have prelim-
inarly to ascertain that f, and 8/du“ are endowed
with the same covariance properties. The form of
(2.4) complies with this prescription.

III. HAMILTONIAN HOMOGENEOUS
COSMOLOGIES

The study of cosmological models in Hamiltoni-
an form is based on the Arnowitt-Deser-Misner
(ADM) method which describes the dynamics of

geometry through a 3+1 decomposition of the
Einstein’s action function and the corresponding
field equations.’> As was first noted by Hawking,’
simply inserting a homogeneous metric into the
ADM action functional does not lead always to the
correct Einstein equations. In particular, the lack
of a variational formulation for the Bianchi-type
universe of class B was pointed out by MacCallum
and Taub.® Unfortunately, as the literature
shows,” ! the derivation of field equations is usu-
ally dealt with in a manner which suffers from seri-
ous drawbacks concerning the behavior of the varia-
tions of the independent variables at the boundary.
As an example of such drawbacks, we mention that
the action itself is infinity merely because of the
spatial contribution.!® To our mind, the best way of
avoiding these conceptual difficulties and,
meanwhile, of arriving at definitive conclusions is
to look at the correct ADM equations for homo-
geneous metrics and to test their potentialness
through the procedure outlined in Sec. II.

Here we adopt ADM notations. As usual in
cosmology, we let N;=0, N =1. Accordingly, the
ADM version of Einstein’s equations reads

[%=7%, 4gl/2(3R®_ % 3Rg?)

1.-122

ab/_pq 1 2
—58 g (whimyy —5m*)

+2g—1/2(7rapﬂpb_%vﬂ.ab)____0 , (3.1)
Pab = —8ab,t +2g_1/2(7Tab - %Wgab)zo . 3.2

In the case of spatially homogeneous models
(characterized by the existence of a three-parameter
isometry group which is transitive on a family of
spacelike hypersurfaces) it is convenient to intro-
duce, on every surface of homogeneity ¢t =const, an
anholonomic frame invariant under the action of
the isometry group. In so doing the spatial metric
8a and the momentum density 7%° turn out to be’
functions on the time ¢ only. In particular, the
three-dimensional Ricci tensor takes the form

3Rab_ _ %Cr’rcxsclggmgrb
— 5 CICligmn8 g "
+5ChCheg
—a,Ctng™g™ —a,Clg™g™,  (3.3)

C,?j being the structure constants of the group speci-
fying the Bianchi type and a, = %C,’;,. Mathemati-
cally, the problem now is to investigate the system
of equations (3.1) and (3.2)—together with the
homogeneity assumption (3.3)—in the unknown
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functions gg,, 7% and to determine the conditions
under which it admits a variational principle.

Look at (2.4) in connection with the system (3.1)
and (3.2). In this context the requirement that

ar<  ar#
gpq 8ab

Bapkpg =0, (3.4)

for arbitrary symmetric tensors Agp,Kpg, is the only
one which is not identically satisfied. Difficulties
occur, in fact, in connection with the quantity

3Gab_3Rab__ % 3Rgab .

To see this, observe first that (3.4) reduces to

3pcd 3pcd
pq |3gab, L O°R™ | _ ab|3ppa, L d°R
4 + 28cd aga g + 78cd agpq
3’R® 3°RM™
—ag’;—— EY habkpq=0 . (3.5)

On the other hand, in view of (3.3), tedious calcula-
tions yield

3 ! 3°R“ q rs,m, p . r5,mq

RPq'*'Tgcd agpq =zapaq—arcsmg g p_arcsmg g ’ (3.6)
3pab 3ppg

aaqu _%=2[C(pq)(aab)_C(ab)(paq)+gS(pgq)(aCb)rsar_gs(agb)(pcq)rsar] , (3.7)
g ab

where parentheses denote symmetrization. Substi-
tution of these results into (3.5) provides the sought
conditions for the system (3.1) and (3.2) to admit a
variational principle.

To examine these conditions in more detail we
put h,, =gu; the arbitrariness of k,, allows us to
find that

2aPa9—a’g*PC?, =0 . (3.8)

As shown by MacCallum and Taub® (3.8) is
equivalent to

a?=0 (3.9

which, according to (3.6), (3.7), makes (3.5) identi-
cally satisfied.

In conclusion, Vainberg’s theorem implies that
the dynamical equations (3.1) and (3.2) for spatially
homogeneous cosmologies may be described
through a variational principle if and only if the
vector a? vanishes. In other words, a variational
formulation is possible if and only if the space is of
class A.

We end this section with two comments. First,
condition (3.9) has already been given in Refs.
8 —10; these authors simply show that, on imposing
spatial homogeneity on the ADM Lagrangian, the
correct equations (3.1) and (3.2) are arrived at if and
only if (3.9) is true. Nevertheless, this result does
not preclude finding any variational principle for
the system (3.1) and (3.2), together with the assump-
tion (3.3). Here, instead, we have proved such a
preclusion to hold in that the system (3.1) and (3.2)
admits a variational formulation if and only if (3.9)
is satisfied.

T
Second, we point out an unusual application of

Vainberg’s theorem. On account of (2.2), calculate
first the function that coincides with the Lagrang-
ian when the system under consideration is poten-
tial and then derive the corresponding Euler-
Lagrange equations. Accordingly, the system is po-
tential if and only if such equations are just the ori-
ginal equations. In our case, this procedure gives
the ADM Lagrangian which, as we know, leads to
incorrect equations for spaces of class B. This ob-
servation confirms our results and corroborates
those in Refs. 8 —10.

IV. CYLINDRICALLY AND AXIALLY
SYMMETRIC GRAVITATIONAL SOLITONS

In investigating Einstein’s equations, soliton solu-
tions have received increasing attention in recent
years. The interest in the variational formulation of
equations admitting soliton solutions is motivated
on a threefold basis. First, there are equations (e.g.,
the Korteweg-de Vries equation) which are derived
through an approximate procedure; the derived
equation need not be conservative. The existence of
a variational formulation for the derived equation
allows the equation itself to be considered conserva-
tive or lossless in the conventional sense of the
term.!! Second, the availability of a functional
leads directly to the construction of constants of
motion or conserved quantities by appealing to the
invariance properties of the functional itself. Of
course, these considerations apply to any type of
equations irrespective of the classical or the rela-
tivistic contexts being concerned while the follow-
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ing third motivation is typical of relativity. The
field equations may be written by taking into ac-
count suitable symmetry requirements; as shown in
the previous section, these symmetry requirements
may determine the failure of the variational formu-
lation. That is why the variational structure of an
equation must be ascertained in every case; here we
are dealing with the gravitational soliton equation.
Following Ref. 5, the metric is supposed to be

ds*=f(z,t)(dz*—e dt?)
+8ap(z,1)dx%dx®, a,b=1,2,

e being equal to —1 or + 1 according as axially
symmetric stationary or cylindrically symmetric
fields are considered. Then, letting

a’=edet(g,) , (4.1)

Einstein’s vacuum field equations determine the
2X 2 matrix g,; through

HabE (agac,ngb),z —e (agac,thb),t =0, (4.2)

while the function f may be evaluated by quadra-
tures once a solution to (4.1) is found. So, the trace
of (4.2) yields the well-known result’

ap—ea =0. (4.3)

It is a remarkable feature of (4.2) that we may disre-
gard the condition (4.1) while performing calcula-
tions, provided we renormalize the final result as>!?

8ap—Q [e det(grs )]_ ! /Zgab . (4.4)

Accordingly, we assume a to be an assigned solu-
tion to (4.3) and then we apply (4.4) to get the
correct physical result.

It is a routine matter to ascertain that the poten-
tialness condition (2.4) for the system g*H,’=0,
equivalent to (4.2), is satisfied. Then we move on to
determine the corresponding Lagrangian L (gu).
According to (2.2) we have

1
L(gn) =8 —8ms) [, 81(08ea-8").:

—e(agey &™) JdA ,
4.5)

where g, is an arbitrary fixed value of g, while
Gop =8ap +M8ap —8.p) and g is the inverse matrix
of g,,. Without any loss of generality we choose
the metric g, to be independent of z,z.

The evaluation of the integral in (4.5) proceeds by
way of intermediate stages; we will show some de-
tails because they are typical when determining La-
grangians corresponding to nonlinear differential

operators. To begin with, observe that

B g, ) @.6)

a)\ rs rs/ ¢ .
Now, denote by L, the part of L involving the
derivatives with respect to z. Some rearrangement

and use of (4.6) yields
L=I—-I,-1I;, 4.7

where

1 a~cd~ o
II =a f() _grgcm,zgdn,zgmnd)“ ’

tag¥
IZ‘_‘a 0 _ag}\'_gcd,zdk ’

1 a~4:d~
I3=a,z fO g—kgcd,zdk .

Since g5, ; = Agas,» integration by parts gives

1 1
Il = _z_anggmngcm,zgdn,z +agcd,z fO ’g\cd,zdk ’

1
I, =agcdg mngcm,zgdn,z +age4,; fO g-cd,zd)L

1
_a,ngdgcd,z +a,zgcd,z fO gfdd}" ’
1
I3=a,zg6dgcd,z"a,zgcd,z fO g{ddk ;

in writing the expression for I, a derivative with
respect to z has been omitted because it affects the
action functional only through (inessential) boun-
dary terms. Substitution in (4.7) produces the ex-
pression for L,.

By simply replacing z with ¢t we get the expres-
sion for the remaining part L, of L. Collecting
these results we arrive at the sought Lagrangian

1
L (grs )= Tanggmn(gcm,zgdn,z —€8cm,t8dn,t ).
(4.8)

Two remarks are in order. First, symmetries of a
Lagrangian imply the existence of conservation
laws. Now, in connection with the Lagrangian (4.8)
possible symmetries are strictly related to the struc-
ture of a(z,t). In fact, as shown, e.g., in Refs. 12
and 13, without any loss of generality we may
choose the coordinate z in such a way that
a(z,t)=z. This in turn yields the conservation law

1
H= TZnggmn(gcm,zgdn,z + €8cm,18dn,t )
=const . 4.9

The formidable system (4.2)—and the equivalent
system in Weyl canonical coordinates (see Ref. 14,
p- 223)—bears evidence of the importance of the
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first integral (4.9). Second, the value of the result
(4.8) is strengthened by the fact that the Hilbert La-
grangian Ly =(—"*g)!"”2R does not lead to the
correct Einstein equations (4.2). Specifically, in the
case under consideration it follows that!

Ly=ea (lnf),tt —a (lnf),zz +eagabgab,tt

1
— g™+ €0 (881 )?

— (g% )+ 5L (g)

whence the desired equations for f are not achieved.
Nevertheless, even if, by analogy with an attempt
undertaken in Hamiltonian cosmology,9 we confine
attention to the reduced Lagrangian L; obtained
from Ly by setting f =1, the corresponding equa-
tions are

%g“chb-l- %gabLl =0.

Since, in general, L340 on the solutions of (4.2),
the inconsistency with (4.2) is evident. Thus we
have found a further example where imposing sym-
metries on the Hilbert Lagrangian makes the
Euler-Lagrange equations inequivalent to the
correct Einstein equations.

We note in passing that if the specification (4.1)
is taken into account, then the potentialness condi-
tions are not met. On the other hand, there are no
counterexamples to the conjecture that equations
admitting soliton solutions arise from variational
principles. Accordingly, the previous observation
complies with the feature that a being an assigned
function on z,¢ is crucial for the application of the
inverse-scattering-problem technique leading to soli-
ton solutions.’
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