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Summary. The paper deals with the behaviour of a viscous liquid
whose flow preserves the structure of the material columns. A balance
law for energy is established which accounts for Navier-Stokes dissipa-
tion; on appealing to the invariance of such a law under rigid motions,
balance equations for mass and linear momentum are derived. It is an
outstanding consequence of the theory that the simultaneous occur-
rence of viscosity and inertia terms makes long gravity waves be governed
by the combined Korteweg-de Vries and Burgers equation.

1. — Introduction.

Standard accounts of long gravity waves of finite amplitude are based
upon the simplifying assumption that the viscosity is totally negligible ().
Despite this drastic simplification, serious difficulties still occur because of the
presence of nonlinear inertia terms and of the nonlinear boundary condition
over the unknown free surface. That is why the literature bears evidence of
several approximate methods making the problem handier (2).

Lately, in order to set up more realistic models for gravity waves in fluids,
vigeosity has been receiving a great deal of attention. Some approaches describe
viscosity by having recourse to a diffusion operator (34). Others describe vis-

() J. J. SroxER: Water Waves (New York, N. Y., 1957).

(?) See, e.g., () and J. Hamivton: J. Fluid Mech., 83, 289 (1977).

(3 E. Orr and R. N. Supax: Phys. Fluids, 13, 1432 (1970).

() T.Kaxuvrant and K. Marsvucsr: J. Phys. Soc. Jpn., 39, 237 (1975); J. W. MILES:
Phys. Fluids, 19, 1063 (1976).
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cosity through Navier-Stokes’ law, but make use of linear approximations.
Specifically, linearized boundary conditions were adopted both in dealing with
long waves in shallow water (*)) and in investigating small-amplitude standing
surface waves in infinitely deep liquids (8).

In spite of the wide interest in the subject, a rigorous theory of gravity
waves based on Navier-Stokes’ equations is still lacking. A first contribution
towards a better understanding of the role of viscosity in gravity waves is given
in a paper of Mei (?), in which the diffusion length is assumed to be not too small
as compared with the fluid depth; in this way he was able to retain nonlinear
cffects. It is just the aim of this paper to provide a new contribution by
establishing a scheme which describes viscosity via Navier-Stokes’ law and,
meanwhile, accounts fully for the nonlinear boundary conditions. Precisely,
basing upon the scheme elaborated by GREEN and NAGHDI (]) in connection
with inviseid fluids, here we develop a model for gravity waves in viscous fluids
under the only approximation that the fluid particles which, at some initial
time, belong to a vertical (material) column will continue to belong to the same
vertical column; ultimately this condition turns out to be similar to but more
accurate than the shallow-water approximation (°).

Often, in studying wave propagation problems governed by nonlinear
equations, one considers only the lowest approximation, namely the linearized
counterpart. An approximate procedure, allowing also for nonlinear terms,
may be performed by having recourse to stretching transformations. This
second procedure, which has been applied for investigating the structure of
shocks (1°), is now widely used because of its great flexibility for describing
dispersive and dissipative waves (1!). For example, in connection with water
waves, we mention an application of stretching transformations by means
of which Green and Naghdi’s inviscid model is shown to lead directly to the
Korteweg-de Vries equation (%), Here we apply again this procedure so
as to examine the effects of viscosity on the behaviour of nonlinear long waves.

Briefly, the plan of the paper is as follows. In sect. 2, starting from the
basic assumption of Green and Naghdi’s ecolumn model, we derive the balance
equations for mass and linear momentum from the energy equation of viscous

(5 M. I. G. BLoor: Phys. Fluids, 13, 1435 (1970).

(&) M. Yaxowrrcu: J. Fluid Mech., 29, 209 (1977); A. PROSPERETTI: Phys. Fluids,
19, 195 (1976).

() C. C. MEr: J. Math. Phys. (N.Y.), 45, 266 (1966).

(®) A. E. Greex and P. M. Nacup1: J. Fluid Mech., 78, 237 (1976).

(®) F. Bampr and A. Morro: Nuove Cimento C, 1, 377 (1978).

(1) R. E. MEYER: Structure of collisionless shocks, in Nonlinear Waves, edited by S. LrI-
sovicH and A. R. SkeBass (London, 1977).

(') C. H. Su and C. S. GARDNER: J. Math. Phys. (N.Y.), 10, 536 (1969).

(2) F. Bampr and A. MorRro: Lett. Nuovo Cimento, 26, 61 (1979).

(13} F. Bampr and A. Morro: Nuovo Cimenlo C, 2, 352 (1979).



EFFECTS OF VISCOSITY ON WATER WAVES 553

fluids via the invariance under superposed rigid-body motions. Then, as a
particular case, in sect. 3 we obtain the shallow-water model for viscous fluids.
Finally, in sect. 4 we are concerned with an outstanding application of the
new theory. Precisely, after having ascertained that Su and Gardner’s ap-
proach (1) does not apply to our equations, we analyse the consequences of a
suitable stretching transformation. It is a noteworthy consequence that long
gravity waves turn out to be governed by the combined Korteweg-de Vries
and Burgers equation; this provides a new hydrodynamic motivation (%!%)
for mathematical investigations of such a model equation ('*9).

2. — Column model.

Let x, y be horizontal space co-ordinates, z the vertical space co-ordinate
and (e, e,, ;) the associated orthonormal basis. Henceforth we consider an
incompressible viscous fluid with constant mass density ¢ moving between the
uneven bottom

x = xe, - ye, — h(x, y) e,

and the free surface

x = xe, + ye, + n(@, y, 1) e;,

where t is the time. The vertical co-ordinate is chosen is such a way that at
equilibrium the free surface is n{(, ¥, t) = 0. The pressure at the free surface
is the atmospheric pressure p,, while the pressure P at the bottom is a function
of z, ¥, t. As usual, a superposed dot denotes the material time derivative, while
g is the gravity acceleration.

Roughly speaking, the column model (3) relies on the hypothesis that the
clementary constituents of the fluid are infinitesimal vertical columns rather
than the usual fluid particles. This is made precise by saying that the position
of a particle of the fluid is expressed as

(2.1) x=r+(y+ Zp)e,,

where r = ve, -+ ye,, y = (n— h)/2, ¢ = n + h, Z € [— }, }]; the free surface
corresponds to Z = }, the bottom to Z = — }. In view of (2.1) the velocity
V = & may be written as

(2.2) V=24 (AL Zw)e,,

(%) R. 8. Jounsox: J. Fluid Mech., 42, 49 (1970).
(%) A. JEFFrREY and T. Karuraxi: STAM Rev., 14, 582 (1972).
(3%) D. J. Kaup: Physica D (The Hague), 1, 391 (1980).
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where v = F is the horizontal component of the veloecity, while 1 =y, w = ¢.
As to the physical meaning of 2 and w, we note that A = A(x, y, t) is the vertical
velocity of the centre of mass of the fluid column around (x,y), while Zw is
the vertical velocity of the particles of the column, at 2 = yp 4+ Zg, relative
to the centre of mass.

It should be mentioned that, in conjunction with the velocity field (2.2),
the horizontal velocity v at the bottom is different from zero unlike the usual
assumption that v = 0 at the bottom. Physically this makes the column
model appropriate if the cffects of viscous adherence are confined to the
boundary layer in which the fluid meets the bottom.

To go further, it is convenient to look at an arbitrary fluid column occupying
a time-dependent region #* bounded by a closed cylinder ¢#* whose unit
outwards normal is denoted by n (see fig. 1). Moreover, denote by # the part
of the surface z = y(x, y, t) belonging to #*. These notations allow us to ex-

Q
\—s’

Fig. 1. — A typical fluid column: #* is the column, 3, the cylindrical boundary,
2 the intersection of the column with the surface 2z = y(x, y, 1).
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press the energy balance as the natural generalization of the one corresponding
to the inviscid approximation (%?). Letting the stress tensor T be given by
the usual Navier-Stokes’ law

T=—pl+2uD, trD=0
for incompressible fluids, we have
d 1
T, fg (; V24 gz + e) dv = f@rdV—}—f[(—pn + 2uDn)-V—q-nlda,

P P e

(2.3)

where ¢ is the internal energy, r the rate of supply of external heat, g the heat
flux vector.

Of course, the balance law (2.3) holds for arbitrary regions #*, which need
not be column shaped. Moreover, eq. (2.3) must be invariant under super-
posed rigid-body motions, which means that the change of frame corresponding
to the transformation ¥V — ¥ 4 U must leave ¢q. (2.3) unaltered. Accordingly,
the arbitrariness of the constant vector U allows us to derive the usual forms
of the balance of the linear momentum as

& [V +genav = f (— pn + 2uDn) da
P CE4d

and, hence, of the balance of internal energy as
d
T oedV= | (2uD-D 4 ¢r)dV —{| q-nda.
7 P o
As a consequence, the balance equation (2.3) simplifies to
d 1 . .
(2.4) @ | elg Vet gz)dV = | 2uV-(divD)dV— | pnda.
P P o

Now we move on to exploit the balance equation (2.4) within the framework
of the column scheme. First we observe that, in connection with the velocity
field (2.2), the stretching tensor D takes the form

D':

d '5w2+zm
l| —V-v

V(A4 Zw)

where V= e,(¢/dx) + e,(8/0y) and d = sym (Vo). Thus the powers at the
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free surface ¢, and at the bottom ¢, are

o =[plv-Vn— (A+ fw)dedy, o,=[Plo-Vh— (i— ju)ldody,
P g

while the power ¢, at the cylindrical surface 02* is expressed as

o, = — ea-fﬂvxdr,
o
where

n
I =f p(z)dz
—h
As a result, the balance of energy for the column under consideration takes

the form

%fé (v2+12+iw2+29u))dxdy_
¥ ]
=u f{2<pv-(v-d) + v-Vw + pAV2i + ]—1; (pszw} dedy +
g

+f{p.(v-Vn—l—%w)+P(v-Vh -} }.—%w)}dxdy—ea-fﬂvxdr.
2 o

Now we derive the balance of mass and linear momentum, within the scheme
of the columnlike motion, through the invariance of the energy balance equa-
tion (2.5) under superposed rigid-body motions. The routine procedure provides

d
a f@q)dzvdy =0,
@

% fgqav drdy = f[P-V"? -+ PVh + u(2dVe -+ Vw)]dzdy + e:,-fIIdr ,
7 Y

d
3 | e#(A 4 gt)dwdy =f (P —p.+ ppViA)dedy .
4

On appealing to Green’s theorem and to the arbitrariness of &, these equations
lead to the corresponding local field equations

(2.6) ¢+ gV-v=0,
(2.7) op® = — VII 4+ pVy + PVh + 2upV -d + pVw,
(2.8) eph =P — p,— ogp + upV2A.
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Therefore, the differential counterpart of eq. (2.5) can be rearranged as the
equation

1 1 1
2. — ot = IT—= S — ugtVew .
(2.9) 15 09 =T — S @(P + p.) + 15 po* V2w

In spite of the cumbersome structure of the system (2.6)-(2.9), it is worth
investigating the column model for two reasons at least. First, it accounts in
a natural way for the boundary conditions at the free surface and at the bottom
without any particular assumption about the depth function 2. Second, although
it embodies standard assumptions on the velocity field, which are typical of
the shallow-water approximation (*7), the column model does not involve any
a priori condition on the pressure field. Accordingly, such an approach may
be viewed as the most general model within the context of shallow-water theo-
ries. This assertion, which will be made apparent in next sections, is sub-
tantiated by the feature that, in the case of inviscid fluids, the column model
leads straightway to the Korteweg-de Vries equation, while the standard
shallow-water theory does not ('1.1%).

3. — Shallow-water model.

In the shallow-water theory (long-wave approximation) the vertical accel-
eration of the fluid particles is assumed to be negligible, which is equivalent to
identifying the pressure p with the hydrostatic pressure. If viscosity effects
are present, such an equivalence no longer holds and, therefore, we have to
select the property characterizing the shallow-water theory in viscous fluids.

Following LAME (!8), we start by assuming that the pressure p is, in faect,
the hydrostatic pressure, namely

(3.1) p=ogn—2) +p,.
This in turn implies that

P=ogp+p,, I=Gegp+0p)e,

thus reducing by two the number of unknown functions. Accordingly, the sig-
nificant equations are

¢g=¢V-v=0, opd=— ogpV(p— h)+ 2upV-d + V¢,

(1) K. O. FriepricHS: Commun. Pure Appl. Math., 1, 81 (1948).
(**y H. LamB: Hydrodynamics, VI edition (Cambridge, 1932).

37 —~ Il Nuovo Cimenio C.
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which are consistent with the two-dimensional approach carried out before
in the literature (see, e.g., (>7).

It is worth remarking that, as might be expected, in the viscous shallow-
water model the evolution of the horizontal velocity v is affected also by the
vertical velocity field ¢. Meanwhile, assumption (3.1) does not imply the con-
ditions 4 = 0, % = 0. Indeed, we have

(3.2) 0k = uv,
(3.3) ot = uViw,

which may be viewed as compatibility conditions on the solution ¢(x,y, t),
v(x, ¥, t). Of course, they hold insofar as (3.1) holds. Relations (3.2), (3.3),
whereby the velocities 4, w satisfy the diffusion equation, are perfectly con-
sistent with the fact that, usually, accounting for viscosity through Navier-
Stokes’ law leads to parabolic equations.

4. — Model equations for nonlinear long waves.

Within the scheme pertaining to the column model, the system of equa-
tions (2.6)-(2.9) accounts exactly for viscosity and nonlinear inertia terms. Addi-
tional restrictions on the scheme allow us to give easily new insights into the
properties of water waves in viscous fluids by appealing to a proper stretching
transformation. To make this point precise, observe first that the flatness
of the bottom, namely h = h,, enables the system (2.6)-(2.9) to be written as

¢+ oV-v=0, opd=—VUI—gp,)+ 2upV-d+ uVop,
P—p,=}opp + ogp— supVie, II— op,=%op*® + Foge*— Fup*Vig.

Now, as usual, suppose that the bottom is flat and that the fields under con-
sideration depend on ¢ and on the spatial co-ordinate 2 only. Then, denoting
by u the z-component of v, the relevant equations are

(4.1) P+ (gu)e =0,  (pu) + (U + x)o = 29QUye,

where v = u/o is the kinematic viscosity, while

(4.2) 1=3%9% + 399" — 39X Plea— v9 .

The fact that system (4.1) cannot be viewed as a particular case of the one

investigated by SU and GARDNER (') leads us to study in detail the behaviour
of (4.1) under stretehing transformations.
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In the linear approximation with viscosity neglected (v = 0) the system
(4.1) yields the equation

Pee— Gho@sz =0
accounting for waves moving to both the left and the right with speed ¢, = (gh,)!.
Basing on this observation, consider a wave moving to the right with speed

¢, as fundamental solution of (4.1) which makes x — ¢,¢ the dominant variable.
Accordingly, introduce the new space-time co-ordinates &, 7 defined as

(4.3) £ =¢&"(x— ¢t), T = g*tlt,

the parameter x being indeterminate as yet. In stretching transformations
the parameter ¢ plays also the role of ordering parameter in formal expansions
of the fields around the equilibrium state. Hence we write

(4.4) @ =ho+ e¢'-F 29" ...,
(4.5) =04 eu'4 e2u"-]- ....
Relative to standard theories, the physical parameter » vepresents an ad-

ditional feature of the fluid. For the sake of generality, we let » be given the
form

(4.6) v = &by,
¥, being a measure of the strength of the viscosity effects (*). Of course, on

account of (4.6), the exponent 8 is expected to be nonnegative; its precise value
will be determined later. Now by virtue of (4.2) we have

(4.7) L= texy-tey'+ ..,

X0 =46k, X=c9,
1'=G¢"+ 190 + 3R gee + mere* P g

We are now in a position to derive the consequences of eqs. (4.1); in
terms of £ and 7, we get

epr + (U4 — o) e + gue = 0,

(4.8) 1 .
eUur -+ ( — ¢o) ue + E xe = 2vgetBug: .

(**) To admit a dependence of physical parameters on the ordering parameter is cus-
tomary in the literature (see, e.g., (®); an analogous procedure is adopted in connection
with particular fields (see, e.g., H. WasmiMmi and T. Taxivri: Phys. Rev. Lett., 17,
996 (1966)).
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Substitute (4.4)-(4.7) into system (4.8); to leading order, both eq. (4.8) are

v Co 4
“e—;%,
0

whence

W= 2o ().

The usual asymptotic conditions, namely «'—>0 and ¢'—>0 for & — - oo,
allow us to set f(z) = 0 (3).
At next order, eqgs. (4.8) take the form

2e ,
gt 5 ¢ ge— (cogd —houd) =0,
0
€,

Co ! 1 2 2x—1 1 0 +3-1, 7 00 " h "
—q =@ @ — Cohye** iy * IS T iy = 0.
A + w7 e + 5 Cohoe™  qeee G + i (Cogz — houg) =

A direct comparison yields

3e , ¥ , 1
(1.9) q.; 4- :;ILQ 7ot — _;J extB-1 qrle | 6 cohoaza—lqﬁéef =0.
2hy 2
Consistently with our procedure the exponent « 4+ f— 1 and 2a — 1 must be

nonnegative and hence a>1— 8, a>}. Thus three cases are possible. First,
0<f< i, a=1—8; eq. (4.9) reduces to the Burgers equation (*)

1 3(" [ 4 < ro__
(4.10) Tk S Fke=0.
o 0 -

Sccond, a = § == }; this provides the Korteweg-de Vries-Burgers equation (%)

’ 3e r ot y 1 !
(4.11) Grt - ¢ gi—— gis+ = Cohoqie =0 .
2h, 2 6

Third, 8 > %, « = %; eq. (4.9) simplifies to the Korteweg-de Vries equation ()
’ 36‘ N 1 2 7
(4.12) ¢ + EIT: ¢'Fe 1 g Cohogese =0 .

It is a trivial task to obtain the counterparts of (4.10)-(4.12) in terms of the
original co-ordinates z, t. For example, letting n = &', eq. (4.11) becomes’

3¢ 1
(4.13) Mo 2 A oty 2 Ma - GRS = 0.
U

(?*) J. M. BrreERSs: Adv. Appl. Mech., 1, 171 (1948).
(@) D. J. KortewrGc and G. DE VRiEs: Philos. Mag., 39, 422 (1895).
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The outstanding result of this section may be phrased by saying that (4.10)
or (4.12) accounts for gravity waves in viscous fluids when dissipation (viscosity)
or dispersion (inertia) dominates, respectively. If, instead, these phenomena
affect gravity waves with comparable strengths, then eq. (4.11) constitutes
the appropriate description.

5. — Final remarks.

Starting from the column model approximation, we have derived the balance
equations for an incompressible viscous fluid. Then, confining the attention
to flat bottoms, we have shown how eq. (4.13) governs the evolution of long
water waves. It is worthy of note that eq. (4.13) agrees with the analogous
one derived by MEI (). Sometimes, however, it is claimed that viscosity ef-
fects are described by other equations (3%2%). Accordingly, we hope that the
present paper results in a significant step towards a unified description of
viscosity.

In the last decade, considerable attention has been focused on the effects
of uneven bottoms on the evolution of long water waves—see, e.g., (2»24). It
is our intention to hinge again upon the balance equations stated in sect. 2
50 as to investigate, through a nonlinear theory, the evolution of solitary waves
under the influence of variable depth and viscosity. In a sense, this would
represent the counterpart of Djordjevic’s paper (2¢) in which viscosity is described
via the diffusion operator (34).

* %k %k
The research reported in this paper was performed in collaboration with

the Istituto per la Matematica Applicata - CNR, Genova, in connection with
the project « Conservazione del Suolo», subproject « Dinamica dei Litorali ».

(?2) W. FErGUsoN, P. SarrmaN and H. Yuexs: Stud. Appl. Math., 58, 165 (1978).
(2) T. KaguTani: J. Phys. Soc. Jpn., 30, 272 (1971).
(#Y) V. D. DJorpJEvIiCc: Int. J. Non-Linear Mech., 15, 443 (1980).

® RIASSUNTO

Si considera il comportamento di un liquido viscoso il cui flusso conserva la struttura
delle colonne materiali, Si formula un bilancio dell’energia che contiene il termine dissi-
pativo di Navier-Stokes; applicando quindi I'invarianza di tale legge di bilancio per
moti rigidi si deducono le leggi di bilancio per la massa e la quantitd di moto. F una
rilevante conseguenza della teoria che, per la simultanea presenza di termini inerziali
e viscositd, le onde lunghe di gravitd sono governate dall’equazione combinata di
Korteweg-de Vries ¢ Burgers.
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BausHue BSI3KOCTH HA NOBeAeHde IrPABHTAMOHHBLIX BOASHLIX BOJIH,

Pesrome (*). — PaccMmaTpuBaeTcst TOBeASHHUE BI3KOM XKHIKOCTH, IOTOK KOTOPOI COXpaHdeT
CTpyKkTypy cronba BemiectBa. dopmMmymmupyercsa OallaHC DHEPrMM, KOTOPBI CONEPKHUT
JIPICCI/IHaTI/IBHbIﬁ YJICH HaBbe-CTOKca. I/ICHOJII:B}’H HHBAPpHAHTHOCTE 3TOI0O 3aKOHA OTHO-
CUTENBHO HenmedhOpMHUPYeMBIX OBIDKEHHIA, BHIBOIATCA ypaBHeHusi OajlaHca OIS MAacCChI
n ummnynbsca. ITonyd4eHO Ba)KHOE CIIEACTBHE 3TOM TEOPHWH: OTHOBPEMEHHOE ITOSIBJICHHE
YJIEHOB, CBA3aHHBIX C BSI3KOCTBIO U WHEPUMEH, IPABOAUT K TOMY, YTO IMHHBIE I'DaBH-
TaUHOHHBIE BOJIHBI ONpeAeiAIoTCA oObenuuHeHHbpIM YypaBHeHmemM Kopresera-ie Bpuca
u byprepca.

(*) Iepesedeno pedaxyueits



