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Heat conduction in rigid solids is examined with the purpose of setting up a systematic 
thermodynamic description accounting for frequency- and wavelength-dependent phenomena. 
Such a scheme is exhibited in two versions, namely extended irreversible thermodynamics and 
hidden variable thermodynamics. Though starting from different assumptions, the two versions 
lead to the same practical conclusions, which in turn may be identified with Chester's microscopic 
results on high-frequency thermometry. Also a generalization compatible with discontinuity 

propagation is proposed. 

I. Introduct ion 

The classical theory of non-equilibrium thermodynamics  ~-3) has been very 
fruitful in accounting for a wide variety of irreversible processes.  However ,  

this theory,  based on the local equilibrium hypothesis ,  is restricted to first- 
order constitutive equations. In order to get a more general formalism, 
including both linear and non-linear terms,  many theories have been pro- 
posed. Amongst  those which have received a more recent development  we 
mention the so-called extended irreversible thermodynamics  ~ )  and the hid- 
den variable thermodynamicsT-9). 

When dealing with non-equilibrium thermodynamics ,  heat conduction is 
obviously a basic phenomenon,  which motivates the very wide literature on 
the subject.  In spite of this, new physical motivations suggest to look again at 
heat conduction in the context  of non-equilibrium thermodynamics .  Indeed, 
as is well known, the usual continuum approach should be valid in the limit of 
long wavelengths.  However ,  in presence of discontinuity waves  like, for 
example,  shocks or heat pulses, short wavelength oscillations are also excited. 
Therefore ,  in order to describe the behaviour  of a solid through a continuum 
theory,  we have to improve the standard model possibly by adding new terms,  
containing time and space derivatives,  in the constitutive equations. In this 
conjunction,  owing to the status of the technology of fas t - response ther- 
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mometers  and to the increasing interest in the propagation of heat pulses for 
the spectroscopic analysis of phonon transport  in solids~°'~), investigation of 
continuum approaches related to relaxation processes and to second sound in 
solids are no longer purely theoretical in character.  

The problem of achieving a more realistic equation accounting for heat 
conduction in rigid solids has already been considered from a microscopic 
point of  view by Chester ~2) by having recourse to the phonon gas. So, 
qualitatively Chester obtains an equation for the temperature field which 
generalizes the one corresponding to the Maxwell-Cat taneo equation in the 
sense that higher-order space derivatives are involved. 

With these observations in mind, our purpose here is twofold. First, to 
obtain generalizations of the Maxwell-Cat taneo equation where higher-order 
gradients of the heat flux occur. Indeed, our attempt succeeds both via the 
extended irreversible thermodynamics (EIT for short) and via the hidden 
variable thermodynamics (HVT for short). This, in turn, allows us to gain new 
insights into these two approaches to non-equilibrium thermodynamics.  The 
second purpose is to investigate the connection of our results with those 
obtained by Chester. Upon establishing such a connection we ascertain a 
complete agreement and hence we can express our phenomenological 
coefficients in terms of properties of the phonon energy spectrum. 

The plan of the paper is as follows. Heat  conduction is investigated in the 
f ramework of EIT (section 2) and through the formalism of HVT (section 3). 
Then, in section 4, the two formalisms are compared while, in section 5, the 
connection is made with high-frequency thermometry  and the microscopic 
expressions from solid-state theory. Finally, in section 6, a more general 
approach compatible with wave propagation is outlined. 

2. Extended irreversible thermodynamics 

Essentially, EIT is a mesoscopic description of many-particle systems 
whose independent variables are not only the classical variables (the specific 
internal energy u, in the case of a rigid heat conductor),  but also the 
dissipative fluxes (here the heat flux q). The evolution equation for u is the 
customary energy balance equation 

p(~ = - V • q + p r ,  (2.1) 

r being the heat supply per unit mass which we drop out here for the sake of 
simplicity. Meanwhile, the evolution equation for the heat flux is not known 
from the start. It is the main problem of EIT to obtain the time derivative of q 
in terms of u, q, and their spatial derivatives, thus providing an equation for 
the evolution of q5,6.13). 
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As usual in EIT,  we assume that the entropy s is a function not only of u 
but also of q, and that its differential is given by the generalized Gibbs 
equation ~6:3,14) 

d s  = T -I d u  + T - l p - t c l l q  " d q ,  (2.2) 

where a, is a function of u, indeterminate as yet, and p is the mass density. In 

view of (2.1) and (2.2) we find that 

p~ = - V .  ( T - l q ) +  q • ( V T  -1 + T - l a l q ) .  (2.3) 

It is one of the basic properties of the entropy s that, in all possible 
processes,  its production cr must be non-negative. The expression of or may 
be obtained from its definition in terms of p~ and of the divergence of the 

entropy flux d~, namely 

= 0~ + V.Js>~0.  (2.4) 

Substitution of (2.3) yields 

o - = - V . ( T - I q - J ~ ) + q  . ( V T - t  + T lal~l)>~O. (2.5) 

It is worth remarking that we make no hypothesis on the particular 
expression for the entropy flux J~ but, rather, we aim at obtaining Js from the 
theory itself as a constitutive relation. So, we are adopting Miiller's viewpoint 
on the entropy fluxJS). Accordingly, we need now an equation relating q to u, 
q, and their spatial derivatives. Then, on account of (2.5), we set 

V T  ' +  T-~a~i l  = I~oq + ~lV2q + ~ 2 V ( ~ '  • q), (2.6) 

where the t~'s are phenomenological coefficients. This assumption generalizes 
previous hypotheses 5't6) on the dependence of the " thermodynamic  force"  
V T - ~ + T - ~ a ~ i l  on the " thermodynamic  flux" q. Consistently with the 
requirements of the second law of thermodynamics,  as expressed by the 
inequality (2.5), we substitute (2.6) into (2.5); then, supposing /~, and ix2 

constant,  integration by parts provides 

o" = - V . { T - '  q - 2 l~ , (Vq)~q  - (ix2 - tx~)(V . q ) q  - J~} 

+ tx0q2 _ 2t~,(~q)~ :.(~rq)S _ (t~2 _ ~txt)(V • q)2 ~> 0, (2.7) 

where the colon denotes double contraction, the superscript s the symmetric 
part, and a superposed spot the traceless part of the corresponding tensors. 

The expression (2.7) is positive for all imaginable processes, i.e. for all 

possible fields q, if and only if 

L = T - ~ q  - 2 tx~(Vq)~q - (ix2 - t x t ) ( V  • q ) q  (2.8) 
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and 

tx0~> 0, g ~ > 0 ,  - g ~  +3g:~<0 .  (2.9) 

Through the condition (2.8), the theory itself determines the form of the 
ent ropy flux which turns out to be different f rom the usual term T tq in 
isotropic rigid conductors  ~7) because here we allow the dependence  on Vq. 

To clarify the meaning of the parameters  a~ and /x0 we look at the 
Maxwel l -Ca t taneo  equation 

q = - A V T  - ~ i l ,  (2.10) 

where A is the thermal conductivi ty and r is the heat relaxation time. We 
recover  this equation as a special case of (2.6) through the identifications 
/Zo= (T2A)I ,  at = - T ( T A )  I. 

3. Hidden variable thermodynamics 

Basically, a material with hidden variables consists of a set of response 
functions 

4~ = +(Y, (,) (3.1) 

and of a function [ governing the evolution of the hidden variables , via a 
differential equation as 

h = f(y,  z, a, Va, VVa . . . .  ), (3.2) 

the symbols  y and z standing for suitable sets of real (physical) variables. The 
rigid heat conductor  may be assigned the structure of material with hidden 
variables by identifying y with the absolute tempera ture  0 and z with the 
tempera ture  gradient g = VO. The hidden variables ,, are assumed here to be 
represented by a vector  A, while the response functions are identified with the 
array (qJ, "0, q) of the free energy qJ, the en t ropy r I, and the heat flux q. 

To go further,  we need some assumptions  on the evolution function [. Both 
to avoid inessential formal  difficulties and to get a theory providing the most  
direct generalization of Fourier ' s  law, we choose the function [ so as to make 
the evolution equations into the single vector  equation 

A = "r '(g - A ) +  v,V2A + v2V(V" A ) ,  (3.3) 

for every fixed particle, r > 0  being a relaxation time and v~, v, 
phenomenological  coefficients. 

The set of response functions 4) must satisfy the restrictions placed by the 
second law of thermodynamics .  Owing to the presence of second-order  
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derivatives in the evolution equation (3.3), we allow for the existence of an 
entropy extra-flux N in addition to the usual term O-lq. The simplest form of 
N involving the hidden variable A and its first derivatives is 

N = A ( V A ) ~ A  + B ( V .  A ) A ;  (3.4) 

a connection between the phenomenological coefficients A, B, v, and v2 will 
be given shortly. 

We adopt as second law of thermodynamics the identical validity of 4'~8) 

Oil + V .  (O-~q + N )  - pro ~ >>- O. (3.5) 

Then, on account of (2.1) and the relation qJ = u -  Orb it follows that the 
inequality 

-p(t~ + r/0)- O-~ q • g + OV . N/>0  (3.6) 

must be true identically. According to our constitutive assumptions, the free 
energy qJ is given by a function of the form qJ - ~(0, A); hence, in view of 
(3.3) and (3.4), the entropy inequality (3.6) may be expressed as 

-- p(t~o + rl)O -- ( O- 'q  + p T - ' $ A ) "  g + p'r-I~bA • A 

+ ( O A A  - pv l$ / t )  • V 2 A  + ( O B A  - pv2~bl~) • V ( V  • A )  

+ p O A ( V A ) ~ : ( V A )  ~ + p O B ( V "  A) 2 ~> 0, (3.7) 

where the subscripts 0 and A denote partial derivatives. 
Our purpose now is to exploit the inequality (3.7) so as to derive the main 

restrictions placed by the second law of thermodynamics on our constitutive 
assumptions. To do this, we observe that, as always~8), the present value of 
the hidden variable A ( t )  is independent of the present value of the real 
variable g(t). Accordingly, as the quantities 0(t), g(t) may be chosen arbi- 
trarily and independently of each other, we conclude that the inequality (3.7) 
holds identically if and only if 

= - 0 o ,  q = - p O t  'OA, (3.8) 

and ~ satisfies the compatibility condition 

p1" '~a • A + ( O A A  - p v ~ A )  • V 2 A  + ( O B A  - pv2qJa)" V ( V  • A )  

+ p O A ( V A ) ~ : ( V A )  S + p O B ( V .  A )  2 >>- O. (3.9) 

Whenever the function 0 satisfies the inequality (3.9), the response functions 
rl and q, defined by (3.8), are automatically consistent with the second law of 
thermodynamics in the form (3.8). On the basis of a merely mathematical 
standpoint, we cannot prefer any function ~ among all those compatible with 
(3.9). Physical arguments, instead, allow us to select the particular free energy 
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function tO given by 

tO = f i t (O)+(2pO) IATA • A, (3.10) 

where fit(0) is the usual equilibrium free energy. First, owing to the in- 
dependence  of the quantities (VA) ~, V ( V .  A )  on the value A, account  of (3.10) 
and the identical validity of the inequality (3.9) imply that 

02A = ulA'r, 02B = u2A7, 

A~>0 ' 2 A + 3 B ~ > 0  ' A>~0 ' (3.11) 

Second, eqs. (3.8) deliver 

"0 = -- rite(0) + (2p0 z) ' a rA  • A ,  
q = -AA.  (3.12) 

Eq. (3.12): may be regarded as the most  natural generalization of Fourier 's  
law. Indeed, when a time independent  uniform field g is considered,  eq. (3.3) 
becomes  A = g  and therefore (3.12),. becomes  the standard law of heat 
conduction.  This is the main motivat ion of the assumption (3.10). 

It is worth remarking that there is no contradict ion between (2.2) and 

(3.12)~. As shown in ref. 19, the differences are in fact  due to the use of the 
variables u and q instead of 0 and A. 

We end this section by mentioning that a different approach to materials 
with hidden (internal) variables is delivered in ref. 20. 

4. Comparison between the two methods 

We are now in a position to make a compar ison between EIT and HVT 
formalisms,  which goes beyond the specific equations and points to a sounder 

understanding of these approaches .  For the sake of concision, however ,  we 
will concentra te  on some specific outstanding topics. 

4.1. Independent  variables 

In EIT the behaviour  of the body is described in terms of physical variables 
u and q only. Both of them have microscopic  expressions and they are well 
defined also in non-equilibrium situations. On the other hand, HVT involves 
hidden variables,  A, besides physical variables,  0 and g. However ,  when 
looking at hidden variables as solutions of the evolution equation HVT 
involves in fact  only physical variables as EIT does. 

In addition, hidden variables may be viewed as averaged global parameters  
which, in an averaged approximate  manner,  account  for macroscopic  
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phenomena resulting from microscopic processes. This idea is made clear, for 
example, in two works of Kluitenberg 21'22) concerning dielectrics. 

4.2. Interpretation of the energy balance equation 

In both theories the energy balance equation takes the form 

pti = - V  • q +pr, (2.1) 

where r is the energy supply per unit mass due, for example, to chemical 
reactions, nuclear reactions, radiation. In EIT r is always supposed to be 
given and eq. (2.1) determines the evolution of the internal energy u. In HVT, 
instead, the exploitation of the second law hinges on the possibility of 
choosing r so as to make ti arbitrary. 

4.3. Second law of thermodynamics 

In EIT the second law is assumed in the form 

= p~ + V • J~ >/0. (2.4) 

In this expression p$ is given through the generalized Gibbs equation (2.2) 
while the selection of the entropy flux J~ is closely related to the constitutive 
equations and therefore it seems logical, as pointed out by Miiller'5), to 
determine it in the same way as the remaining constitutive equations. If the 
Gibbs equation used to obtain p~ were the usual local-equilibrium one, this 
assumption would indeed be restrictive. However, the temperature T is not 
exactly the local-equilibrium absolute temperature because it contains also 
some corrections of the order of q2, which may be determined once a~ has 
been fixed. The restriction placed by the energy balance equation (2.1), 
relating u and q, is taken into account by introducing this equation into (2.2). 
Finally, the arbitrariness of q and Vq leads to the desired results. 

In HVT the second law is expressed as the generalized Clausius-Duhem 
inequality 

p'q + V • (O-lq + N)  - pro ' >! O, (3.5) 

allowing for the possible existence of the entropy extra-flux N. No Gibbs 
equation is introduced and the expression for ~ is derived by appealing to the 
correspondent constitutive equation and to the assumed evolution equation. 
Meanwhile the consequences of the energy balance equation (2.1) are in- 
herited by (3.5) through the term pr. Then, the independence of the hidden 
variable A( t )  of the arbitrary values 0(t) and g(t) provides the sought results. 
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5. A physical interpretation: high-frequency thermometry 

So far, aside from the inequality (2.9), the parameters t~ and ~: (or v~ and 
~'2) are left indeterminate by our thermodynamic theory. This freedom is now 
so used as to show how the heat equation (2.6) accounts for high-frequency 
thermometry~2). 

First of all, set 

~, = - ( T 2 A )  ~r0, ~2 = - (T :A)~r~ ,  

r0 and r~ being the correlation lengths of the transverse and longitudinal 
perturbations of the heat flux. Upon substitution, eq. (2.6) becomes 

q = - A V T -  Tgl + roV2q + r ~ V ( V ,  q). (5.1) 

Now, in view of the energy balance equation (2.1), keeping terms only to first 
order in the deviations from equilibrium yields 

q = - A r T  - r i  t + roV2q - pcr~VT,  (5.2) 

c being the specific heat. By the same token, taking the divergence of (5. i) we 
find that 

VZT + roV4T + r~pca IV:J" - pcA ~T -rpcA i~ 

+ ro"rpch ' V = T -  r~pch 'V4~ " -  ror~pch 'V4T = 0. (5.3) 

Looking at r0, r~ and r as (small) coefficients of terms improving the standard 
theory,  it is reasonable to neglect non-linear quantities in r~, r~, and z. 
Accordingly, (5.3) reduces to 

V2T  + r~V4T + r~pch ' V : T  - pch 'J" - rpch  ~T = 0, (5.4) 

which is just the equation deduced by Chester ~2) in his analysis of high- 
f requency thermometry  motivated by the experimental possibilities of fast- 
response thermometers  having submicrosecond response times. It is worth 
mentioning that Chester 's  deduction, based on a microscopic point of view, 
concerns a phonon gas described by a kinetic equation of the relaxation type. 
As a consequence,  the coefficients appearing in (5.4) take on the expressions 

h ( p c ) ~ = ~ [ ( R 2 ) ( ( S  -')~,v(R%~))I]+~(S2),,,(R%), (5.5) 

7 = (R2)(R'r°  I) ~, (5.6) 

ri = [(S 2)~,~(R~-~-')] ' '  . . . . .  " b ( S ' ) . d S  - ) . , (RT . ) (R- )  + ~(R 3,r.) - ~(R)(R-z.)]. (5.7) 

ro = ~(S2),,~h(pc) '[(S '),,~(RzU') '][(R)(R3T:,)- (R)ro)(R%)] (5.8) 

where ~-,(e) and T,(e) are the energy dependent  relaxation times correspond- 
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ing to the normal and the umklapp processes, respectively, ~ being the 
phonon energy, while 

R = ~%(E)[ru(~) + zn(~)] -1, (5.9) 

and 

(Sm)av  = (2Sg '-3 + S~'-3)(2St 3 + S~3) -~ (5.10) 

St and S~ being the transverse and longitudinal velocities. Moreover the 
bracket (A) for any function A(e) stands for the average defined by 

(A) = ( f  C ( , ) A ( , ) d k ) ( ~  C ( , ) d k ) - ' ,  (5.11) 

where k is the wavevector of the phonons and C(~) is the heat capacity per 
phonon mode of energy e. 

Therefore, the theoretical predictions for the heat capcity C(e) and the 
relaxation times ru(~) and r,(e) lead to the values for ;~(pc) -1, r, r 2, and r~ 
which may be compared with the experimental results obtained through the 
analysis of the thermal disturbances by means of (5.4). In particular, it may be 
seen from (5.6) that the relaxation time T is related to the dominance of 
normal or umklapp processes. If normal processes are predominant, T may 
have large positive values and the corresponding term becomes predominant 
in (5.4). If, on the contrary, umklapp processes predominate, "r tends to zero 
(R ~ 0) and then (5.4) becomes highly diffusive. 

6. An approach compatible with wave propagation 

Eq. (5.4), derived by Chester through the microscopic analysis of the 
phonon behaviour and by ourselves via a phenomenological macroscopic 
theory, suffers from the paradox of infinite speed of propagation of thermal 
signals. To remedy this deficiency, we consider the general thermodynamic 
scheme describing dissipative effects in simple fluids. This subject was 
analyzed in detail both from the viewpoint of EIT 5) and from the viewpoint of 
HVTS"9). Here we recall only that dissipative effects are accounted for through 
three dissipative fluxes (or three hidden variables) which represent the heat 
flux q, the scalar viscous pressure pV, and the viscous pressure tensor 1 ~V. The 
evolution equations for these fluxes, including cross-effect coupling terms, 
may be written as  5'9) 

il = - ' r T ' ( q  + )~VT - L T 2 ~ - ' V p  " - M T 2 ( 2 p , ) - I V  • P" ) ,  (6.1) 

16 v = -To'(p ~ + ¢ V .  v - L T A - ~ V  • q) ,  (6.2) 
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(lbv) = - z ~ [ k  v + 2/.tV - M T A  ~(Vq)q, (6.3) 

v being the velocity and V = (VvY ,  while the entropy flux turns out to be 

J, - T ~q + Lp"q + M P ' q .  (6.4) 

In this scheme it is possible to deal with heat conduction in rigid bodies by 
setting V • v = 0 and V = 0. The resulting theory is hyperbolic ~) and hence il 
permits wave propagation at finite speed. Moreover,  under suitable ap- 
proximations, Chester 's  theory is easily recovered.  Precisely if, following 
Chester,  we assume that the conditions 

(pV) ~r,,pv,~ 1 and ( lb ' : l  b') 'r~(lb~):(/~v),~ 1 

hold, eqs. (6.2), (6.3) and the hypothesis of rigid motion deliver 

p " = LTA ~V. q (6.5) 

~v = M T A  ~(fq)L 16.6) 

Now, substitution in (6.1) and linearization provide 

q = - A F T  - - c j (  1 + [L'Ti,(~'A) ~+~M2T~(2I~A) t ] V ( V ,  q) 
+ ~M2T3(2Ix A) 1~,2q, (6.7) 

where T0 is the reference temperature.  This equation stands irl complete 
agreement with Chester 's  constitutive equation (5.4). in passing we note that 
the linearization procedure complies with the approximations of Chester 
about the linearity of the collision term with respect to the number of 
phonons. 

7. Conclusions 

The classical Fourier 's  law of heat conduction,  while being extraordinarily 
useful in describing quasi-stationary phenomena,  cannot deal with more 
sophisticated experiments involving the excitation of short wavelength per- 
turbations. Such experiments are, on the other side, very useful in such fields 
as, for instance, spectroscopy of phonons in solid state physics. So far, 
equations appropriate for the description of this kind of experiments have 
been derived from microscopic theories, while macroscopic thermodynamic 
formalisms have often passed by these problems. 

The main concern of this paper has been precisely to show that, via simple 
macroscopic theories, it is possible to go further into the problem of heat 
transport  in rather extreme, but experimentally accessible, situations and 
achieve equations accounting for microscopic properties. It seems satis- 
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fac tory  that  heat  t ranspor t ,  even  in these  special  condi t ions ,  r emains  in the 

scope of macroscop ic  t h e r m o d y n a m i c s .  
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