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A hidden variable approach to nonstationary relativistic thermodynamics is developed thoroughly in the case of heat con-
ducting fluids. The results show that the theory is consistent with and more general than other ones that appeared recently

in the literature.

In recent years much attention has been devoted to
topics concerning nonstationary relativistic thermody-
namics especially in connection with astrophysical and
cosmological problems. More specifically, the atten-
tion has been focused on dissipative processes so as to
explain the high regularity in the structure of the
Universe at large scale (cf. ref. {1] and references cited
therein). In this context, much research has been under-
taken in an attempt to produce a proposal overcoming
the drawbacks of the Navier—Stokes-Fourier theory
whereby the signals are propagated at infinite speed.
Such is the case, for example, of the nonstationary irre-
versible thermodynamics elaborated by Israel and
Stewart [2,3]; as shown in ref. [4], the adoption of
this causal thermodynamics leads to crucial conse-
quences on the evolution of model universes. While
particularly awkward in a relativistic theory, infinite
propagation speed is annoying at the classical level as
well; that is why classical irreversible thermodynamics
has been investigated by many workers (cf. e.g. refs.
[5,6]).

A causal nonstationary thermodynamics has been
set up by ourselves via a hidden variable approach both
in the classical [7,8] and in the relativistic [9,10]
framework. Our aim here is twofold: to give further in-
sight into the thermodynamics with hidden variables
and to make a timely and helpful comparison with the
extended irreversible thermodynamics by Lebon et al.
[6] through the corresponding causal evolution for
heat conduction [11].

Henceforth, the indices p, e, 8, g, A denote partial
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derivatives. A superposed dot stands for the covariant
derivative along the fluid flow, i.e. C;u =uq,.,, while
hy, =8y tuyu,is the spatial projector.

Briefly, Pavon et al. [11] allow the specific entropy
function § of a fluid to depend on the heat flux g*, be-
sides on the mass density p and the internal specific en-
ergy e. Then, upon setting

8, = ole, p)(pT)1q", (1)
the temperature T being defined by
T-1=3,, )

they exploit the corresponding entropy balance equa-
tion and, as the most simplifying assumption, they
find that

qu = —K hﬂv()\y - aT(’Iy)! (3)

where « is the thermal conductivity and A, is the rela-
tivistic temperature gradient T, + T4,.. The require-
ment that eq. (3) reduces to the well-known Maxwell—
Cattaneo equation in the comoving frame amounts to
setting

a=—1(kT) 1, 4)

7 denoting the proper relaxation time of the process.
This is sufficient for the comparison we have in mind.

Generalizing the customary outlook, we say that a
material with hidden variables consists of a set of re-
sponse functions

o=90(y, A)
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and of a function f governing the growth of the hidden
variables, namely

A=f(r,z, A A).

Essentially the distinction between the physical vari-
ables y and z is that the latter vanish at equilibrium.
Such a distinction is substantiated by the fact that the
explicit dependence of ¢ on z leads unavoidably to the
paradox of infinite propagation speed. In addition to
other results, this scheme provides Miiller—Israel’s
theory [12,2] as a particular case [10].

When dealing with non-viscous heat conducting
fluids, y may be identified with the pair (8, p), 8 being
the absolute temperature, and z with A. For our pur-
poses it is enough that we choose A as a spatial vector,
N‘u“ =0, and f as a linear function, that is to say

h*A, =ah, + DA,

here the coefficients a, b are assumed to be indepen-
dent of 8, p. The requirement that a pair (A0, A0) be
asymptotically stable at fixed AO forces  to be nega-
tive; setting b = —7 the parameter 7 takes on the mean-
ing of relaxation time. So, upon renormalizing the hid-
den variable, namely (ar)~1A - A, we have

A =1
huvAv T (Ay - AM)' (5)
The response ¢ — which may be identified with the set

(¥, s, P, q), ¥ and p being the free energy and the pres-

sure — is restricted by the Clausius—Duhem inequality
whereby
—p(Y +s6) — put u—071g"N, >0
must hold identically. As ¢ = (8, p, A)and p
= —pu*, , substitution of eq. (5) yields
—o(Yy +9)0 + (029, — Pk,
(6)
—(071g# +pr7 1y, N, +orT 1Y, A, 20,

The independence of the hidden variable A of the pres-

ent values of the physical variables 6, 8, p, L
[7,9] allows us to say that (6) holds only if

5=V, P=pM,, qt=—pirly, @)
gbA“A" =0. 8)

Whenever the function  satisfies the inequality (8),
the response functions s, p, g, as defined by eqs. (7),
are automatically consistent with the second law of
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thermodynamics. Now, on the basis of physical argu-
ments, we choose a particular function ¥ among the
admissible ones. Specifically, set

VO, p, A)=W(0,0) +kT(200) 1 AHA,,. )
Hence eqgs. (7) become
s=—W, +k1(202p)"1ARA,, q* = —KA, (10)

while the inequality (8) gives k = 0. Note that in the
case when the temperature gradient is held constant
eq. (5) asymptotically yields A = A and, what is more,
eq. (10) becomes Fourier’s law of heat conduction.
Finally, the definition e = { + 05 provides

e=V — 0¥, +kr(pf)1AA,,. 1)

The comparison with the relations (1)—(4) is not
immediate because the energy e depends on the hidden
variable A besides on the equilibrium quantities 8, p.
As a first step, observe that use of egs. (10) and (11)
leads to

§,=sp/eq =01

and hence T'= 6. Then, in view of the identity

sq“ = Squ saeq“/ee,

a direct calculation provides
§q” = —1(620k)"1q".

On account of eq. (4), this result coincides exactly
with expression (1) thus showing how the flexibility of
the hidden variable approach permits us to obtain the
conclusion of ref, [11] in the important special case
9).

The fact that the two theories are so strictly related
is satisfactory from a general viewpoint but even more
in conjunction with the structure of the entropy func-
tion (10). Indeed, as shown above, the entropy is un-
avoidably dependent on the hidden variable A and the
corresponding term plays a vital role in our deduction.
The importance of this aspect is strengthened by the
property of the Clausius—Duhem inequality whereby,
even accounting for further irreversible phenomena,
the entropy is affected by hidden variables only
through the one describing heat conduction [7,10].

Beyond the consistency of the different approaches
to nonstationary thermodynamics (cf. also ref. [10])
to our mind one element weighs in favour of the hidden
variables. Such is the case of wave propagation prob-
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lems where the structure of the evolution equations
allows us to regard the hidden variables as continuous

quantities across the discontinuity fronts [9].
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