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Abstract: General frame transformations between inertial observers are simplified by imposing 

three kinematical conditions. A theorem is proved that such conditions ultimately correspond to a 

suitable choice of the coordinates in the two frames. Accordingly, the three kinematical conditions 

do not imply any genuine restriction. A further, restrictive, condition concerning rotational 

invariance is imposed, so determining the final form of the frame transformation. 

1. Introduction 

In the first paper of this series [1], from now on denoted by I, we introduce a projector operator 

formalism which is here applied to exhibit a new approach to the theory of high velocity frame 

transformations. The guideline is constituted by the thorough analysis of  Mansouri e Sexl [2] 

about the problem of testing special relativity against the so-called “ether theories” in which there 

exists a privileged observer and the principle of relativity no longer holds. At this level of  

generality, it is important to understand the role of every parameter involved in the frame 

transformation. Hence a first step is that of determining a frame transformation where all the 

inessential parameters have been eliminated. To do this, Mansouri and Sexl introduce, as 

reasonable requirements, three kinematical conditions which ultimately correspond to a suitable 

choice of the coordinates in the two frames. Afterwards they impose that the absolute space is 

isotropic; this requirement, although “natural”, turns out to be a restrictive condition on the 

transformation. 

 

In order to cast this approach into the context of our paper [3], we reformulate the three 

kinematical conditions by involving the projection operator formalism developed in [1]. In so 

doing we are able to prove the theorem that the three kinematical conditions are accounted for by a 

unique rotation matrix. Instead of the isotropy condition, we prefer to state a principle of rotational 

invariance of the transformation matrix around the only privileged direction single out by the 

relative velocity between frames. Step by step we prove that the Mansouri and Sexl theory and our 

revisited approach are equivalent. 

 

In conclusion we arrive at a final expression for the frame transformation between inertial 

observers, which depends on three arbitrary functions. The mathematical property of such a 

transformation and the problem of clock synchronization will be analyzed in the next papers. 

 

In the sequel we freely use the notations and the results proved in I. 
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2. The Mansouri-Sexl transformation 

In ref. [2], Mansouri and Sexl approach the problem of frame transformations by considering two 

inertial observers: the absolute observer A  and a generic observer F . Here, we denote by small 

(resp. capital) letters the space-time coordinates of  A  (resp. F  ) and let v  be the velocity of  F  

with respect to A , namely the velocity measured by A  of the points at rest in F . Analogously we 

denote by V  the velocity of  A  with respect to F . 

 

As usual in the literature, Mansouri and Sexl too assume that the frame transformation is linear and 

write the most general linear transformation between  A  and F  – their eq. (6.1) of ref . [2] – in the 

form: 

 

   ZYXatT 32     

(2.1)  zbybbxtbX 321    

   zddyxdtdY 321    

   ezyexeteZ  321   

 

where all the coefficients are arbitrary functions of v  which are to be determined either by 

experiment or by theoretical reasoning. For subsequent applications, it is convenient to recall here 

the notation used in our paper [3], where we proved that the transformation (2.1) can be written in 

the form 

 

(2.2a)  tWxSX ij
j

ii    

(2.2b)  NtxHT k
k   

 

Two consequences of (2.2) are immediately obtained by deriving (2.2a) with respect to the time t 

to get 

 

i
j

j
i

i

W
dt

dx
S

dt

dT

dT

dX
  

 

which, in view of eq. (2.2b),can be written as 

 

(2.3)  
i

j

j
i

i

W
dt

dx
S

dT

dX
N   

 

Observe now that, by definition, V  is the velocity of a point P at rest in A  , namely of a point P 

whose coordinates ix  are constant in time. Then, eq (2.3) gives 

 

(2.4)  
ii WNV   

 

Analogously, v  is the velocity of a point P at rest in F  , namely of a point P whose coordinates 
iX  are constant in time. Then, eq (2.3) implies 

 

(2.5)  ij
j

i NVvS    
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In view of such results, transformation (2.2) can be cast into the form 

 

(2.6a)  )( tvxSX jj
j

ii    

(2.6b)  NtxHT k
k   

 

Before proceeding it is convenient to compare eq. (2.1) with eq. (2.2a); it is straightforward matter 

to get 

 

(2.7)  


















eee

ddd

bbb

32

32

32

S  

 

(2.8)  ),,( 111 edbW  

 

Mansouri and Sexl aim at discussing the assumptions that are usually tacitly made on a 

transformation like (2.1) by explicitly imposing some “natural” requirements of geometrical and 

kinematical nature. Here we analyse in detail the conditions imposed by them and propose an 

alternative approach based on the projection operator formalism [1]. 

 

Note that they choose the x axis parallel to the velocity v  from the start, although they make this 

fact explicit only when imposing the third kinematical condition. So, their specific results can be 

achieved in our general contest by letting )0,0,(vv which implies that the projectors introduced 

in I sect. 2 take the form 

 

(2.9)  


















000

000

001

/ )P(vΠ v , 


















000

010

000

P(y) , 


















100

000

000

P(z) , 

 


















100

010

000

P(z)P(y)Π1Ω  

 

We remark that we shall use expressions (2.9) only when a specific comparison with the results of 

Mansouri and Sexl is carried out; otherwise we maintain all our results independent of this 

particular choice of the spatial coordinates. 

 

3. First kinematical condition  

The first kinematical condition imposed in ref. [2] – their eq. (6.2) – is that the X  and x  axes slide 

along each other, i.e. 

 

(Kin 1)  00:,  zyZYxt                 
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On account of (2.1) they get 

 

(3.1)  011  ed ;    022  ed  

 

We remark that the same conclusion (3.1) can be arrived at by changing the direction of the row in 

(Kin 1). Finally, we note that condition (Kin 1) corresponds to the choice of the X  axis in the 

frame F  ; so no generality is lost by imposing condition (Kin 1). 

 

Our approach 

Our idea is that of exploiting the link (2.5) between the velocities v  and V . To this end change 

the coordinates in the frame F   according to the formula i
i

kk XRX ˆ  , where R  is a rotation 

matrix satisfying the standard orthogonality condition 1RR T , the suffix T denoting 

transposition. Choose R  so that 

 

(3.2)  kki
i

k vVVR 2ˆ   

 

where   is a suitable scalar quantity. Of course the matrix R  is determined up to a rotation which 

leaves the components iv  unvaried. A first consequence of this choice is that, formally, we have 

 

)VP()P(vΠ Vv ˆ/ˆ/   

 

Also, in view of (3.2), applying the matrix R  to both members of  eq. (2.5) implies 

 

(3.3) ki
i

kj
j

i
i

k vNVNRvSR 2   

 

So, on defining the matrix  j
i

i
k

j
k SRS ˆ  we conclude with the relation 

 

(3.4) kj
j

k vNvS 2ˆ    

 

This means that the matrix Ŝ  transforms a vector whose components are proportional to iv
 
into a 

vector with the same property. In terms of the operator Π , for any vector a  we can write eq. (3.4) 

in the form 

 
p

p
kp

p
j

j
k aNaS  2ˆ    

 

Applying the operator Ω , since 0ΩΠ   [1] we easily find 

 

0ˆ 2  p
p

k
k

qp
p

j
j

k
k

q aNaS    

 

and hence, in view of the arbitrariness of a , we conclude that 

 

0ΠSΩ  ˆ0ˆ
p

j
j

k
k

q S   
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As a first conclusion, we can say that it is always possible to choose S  such that  

 

(3.5) 0ΠSΩ    

 

Condition (3.5) can be interpreted as follows. Since j
j

iii xxx  || , in view of  transformation 

(2.6a) we can write 

 
p

p
j

j
ijj

j
ii xStvxSX  )( ||  

 

Applying now the operator Ω  we obtain 

 
p

p
j

j
i

i
kpp

p
j

j
i

i
ki

i
k xStvxSX  )( ||  

  

which, in view of (3.5), yields 

 

(3.6) p
p

j
j

i
i

ki
i

k xSX   

 

Note now that equation  0 i
i

k X , resp. 0 p
p

j x , selects a straight line parallel to V  in  F  

, resp. parallel to v  in A . Since, in view of (3.6) 00  p
p

ji
i

k xX , the two straight 

lines coincide: hence V  is parallel and opposite to v . 

 

Comparison 

Condition (Kin 1) corresponds to the requirement that a vector parallel to v  transforms into a 

vector which is still parallel to v , which is exactly the content of eq. (3.4). Since eq. (3.4) is 

equivalent to eq. (3.5), condition (Kin 1) turns out to be equivalent to eq. (3.5). 

 

To obtain the results (3.1) we use the special projectors (2.9) to put eq. (3.5) into the explicit form 

 

0ΠΩS 



































































00

00

000

000

000

001

100

010

000

2

2

32

32

32

e

d

eee

ddd

bbb

 

 

hence 

 

0,0 22  ed0ΠΩS   
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We remark that Mansouri and Sexl deduced also that the temporal coordinate t  cannot enter the 

eqs (2.1) for the coordinates Y  and Z . Here such a condition follows straightforwardly from eqs. 

(2.4), (2.5), (2.7) and (2.8). Indeed Mansouri and Sexl omit to deduce eq. (2.4) that the velocity V  

is proportional to the vector W . Moreover eq. (2.5) asserts that the velocity V  is also 

proportional to Sv , a quantity that can be easily calculated via eq. (2.7). Since )0,0,(vv we have 

),,( 22 edbvSv . So the conclusion is that ),,(),,( 22111 edbvedb W  and hence 

 

00 21  dd  ; 00 21  ee  

 

thus fully recovering eq. (3.1). The other condition 

 

(3.7) bvb 1  

 

will be useful in discussing the third kinematical condition. 

4. Second kinematical condition  

The second kinematical condition imposed in ref. [2] – their eq. (6.4) – is that the ),( ZX  and 

),( zx  planes coincide at all times, i.e. the two frames slide along these planes: 

 

(Kin 2)  00:,,  yYzxt   

 

On account of (2.1) they easily get 

 

(4.1)  03 d  

 

As for condition (Kin 1), the same conclusion (4.1) can be arrived at by changing the direction of 

the row in (Kin 2).We note that condition (Kin 2) corresponds to the choice of the Z  axis in the 

frame F  , so no generality is lost by imposing condition (Kin 2). 

 

Our approach 

Let condition (Kin 1), namely eq. (3.5), hold true. As seen previously, condition (Kin 1) is 

compatible with rotations around v . Here we fix such degree of freedom. 

 

Define in A  two mutually orthogonal unit vectors y  and z  orthogonal to v . In the frame  F   

define the unit vector Z  as 

 

(4.2) j
j

p
p

ii zSZ      

 

where ΩSz/1 . By definition Z  is orthogonal to V . Perform now a rotation R  around V  

(or v , which is the same in view of  (Kin 1)) in such a way that 

 
iq

q
i zZR   

 

note that such rotation does indeed exist because both z  and Z  are unit vectors orthogonal to V  

(or equivalently v ). Therefore applying the matrix R  to both members of  (4.2) we get 
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j
j

p
p

k
k

ik
k

ii zSRZRz    

 

Now, as easily follows from eq. (3.9) of I, we have ΩRΩR  ; so the last relation can be written 

as 

 
j

j
p

p
k

k
ii zSRz    

 

Applying to both members the projector operator P(y)  and accounting for the obvious relation 

P(y)P(y)Ω   we find 

 
r

r
j

j
p

p
i

i
qr

r
j

j
p

p
k

k
i

i
qi

i
q zzPSRyPzzPSRyPzyP )()()()()(0    

 

Then we can say that it is always possible to choose S  such that  

 

(4.3)  0ZSY    

 

To understand the meaning of condition (4.3) define formally a unit vector Y  by means of the 

relation 

 
ii yY   

 

By definition Y  is orthogonal to both v  and z  and hence to both V  and Z . Multiply eq. (3.6) 

by P(y)  to get 

 
p

p
j

j
i

i
kp

p
j

j
i

i
kp

p
j

p
j

j
i

i
kp

p
j

j
i

i
ki

i
k xzPSyPxyPSyPxzPyPSyPxSyPXyP )()()()())()(()()()( 

 

  

In view of (4.3) the last term is null. So we arrive at the relation 

 

(4.4)  p
p

j
j

i
i

ki
i

k xyPSyPXyP )()()(   

 

Note now that equation 0)( i
i

k XyP , resp. 0)( p
p

j xyP , selects the plane generated by V  

and Z  in F  , resp. by  v  and z  in A. Since in view of (4.4) 

0)(0)(  p
p

ji
i

k xyPXyP , the two planes coincide or, better, they slide on each other. 

 

Comparison 

Condition (Kin 2) corresponds to choosing a particular rotation around v  allowing us to select the 

unit vector Z , which is exactly the content of eq. (4.3). 

 

To obtain the results (4.1) we use the special projectors (2.9) to put eq. (4.3) into the explicit form 
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0ZSY 



































































000

00

000

100

000

000

000

010

000

3

32

32

32

d

eee

ddd

bbb

 

 

hence 

 

03  d0ZSY   

 

A remark is in order. The procedure we adopted here can be performed independently of condition 

(Kin 1) provided that all the projector operators are formally written in terms of the velocity v . 

Indeed The last implication is independent of the results (3.1). 

 

5. Third kinematical condition and comments 

The third kinematical condition imposed in ref. [2] – their eq. (6.6) – is that the origin of  F   

moves along the x  axis with velocity v  with respect to A : 

 

(Kin 3)  00,  ZYXzyvtx   

 

On account of (17) they get 01  bvttb  that is 

 

(5.1)  bvb 1  

 

which coincides with eq. (3.7). 

 

A first conclusion 

Having imposed such three kinematical conditions, Mansouri and Sexl arrive at writing the spatial 

part of transformation (2.1) – their eq. (6.7) – in the form: 

 

   zbybvtxbX 32)(    

(5.2)  dyY    

   yeezZ 3   

  

Here we proved that the three kinematical conditions are summed up by the fact that we can 

always choose the matrix S satisfying the following relations 

 

(5.3)  0ΠSΩ  ; 0ZSY   

 

This conclusion is made evident by the following 

 

THEOREM 5.1.  There exists a unique rotation matrix R  that makes the transformation matrix 

S  given by eq. (2.7) into the form 
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(5.4)  


















ee

d

bbb

3

32

0

00ˆ RSS  

 

Proof.   To prove the theorem it is convenient to use a vector notation. Precisely on introducing 

the three vectors 

 

),,(),,(),,( 333322221 edbedbedb  sss  

 

we can formally write 

 



















|||

|||

321 sssS  

 

Analogously, the rotation matrix R  can be written in terms of three unit vectors 1r , 2r , 3r , 

mutually orthogonal by means of which we can write 

 

























3

2

1

r

r

r

R  

 

in so doing the orthogonality condition for R  is automatically satisfied. We now impose the 

relevant components of RSS ˆ  to be zero, which, in the actual notation, means 

 

0321312  srsrsr  

 

A straightforward calculation shows that formulas 

 

|| 1

1
1

s

s
r    

|| 31

31
2

ss

ss
r




   213 rrr   

 

express uniquely the entries of the rotation matrix R  in terms of the entries of the original matrix 

S .  ■ 

 

Due to this theorem, we point out that we can arrive at the form (5.4) without loss of generality by 

simply changing the coordinates in F  through a unique rotation. No other entry of S  can be made 

vanishing in this way. Therefore to proceed further it is necessary to impose assumptions of 

different nature which, although physically acceptable, are indeed restrictive. We shall discuss this 

point in the next section. 

 

6. Isotropy and rotational invariance 

Isotropy 
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To fix some other coefficients, Mansouri and Sexl state the following condition 

 

(S1)  There is no preferred direction in A 

 

Without exhibiting any detailed calculation, Mansouri and Sexl claim that condition (S1) implies 

all these relations 

 

(6.1)  03 e ;  032  bb ; de   

 

In our notation such relations read 

 

(6.2)  0SYZ  ; 0ΩSΠ  ; ΩΩΩS d  

 

Thus, Mansouri and Sexl conclude that the most general frame transformation accounting for all 

the above results is – their eq. (6.10): 

 

   )( vtxbX    

(6.3)  dyY    

   dzZ    

 

Rotational invariance 

As suggested also by Mansouri and Sexl, condition (S1) implies that the only preferred direction, 

as far as the system F  seen from A  is concerned, is v . On the other hand, condition (Kin 1) 

shows that also the direction of V  represents the same preferred direction. In a sense both 

observers single out the “same” preferred direction. So it seems to be of interest that we analyze 

the consequences of  the following condition 

 

(R1)   the matrix S  is invariant under rotation around the direction of v  

 

Let us make condition (R1) mathematically operative. As is well known by the Euler theorem (see, 

e.g., ref [4]), the matrix R  describes a rotation around v  if and only if 

 

(6.4)  vRv    

 

The idea underlying condition (R1) is that transforming rotated vectors by means of S  gives the 

rotated transformed vectors, i.e. 

 

)( tvxSRRX   

 

Since, trivially, 

 

)( tvxRSRX   

 

comparison yields 
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)()( tt vxRSvxSR   

 

which, in view of the arbitrariness of x , yields 

 

RSSR   

 

Hence condition (R1) is mathematically equivalent to  

 

(6.5)   SRSR T  

 

The consequences of condition (6.5) have been drawn in paper I – see formula (3.10). On account 

of (Kin 1) and (Kin 2) we conclude that 

 

(6.6)  ΩΠS db   

 

Hence, in accordance with eq. (6.3), the spatial part of a generic frame transformation depends on 

two arbitrary functions.  

7. The temporal part of Mansouri-Sexl transformation  

The previous results show that the transformation (2.1) has been specialized to the following 

 

(7.1a)  k
k XtaT   

(7.1b)  tbvxdbtvxdbX ij
j

i
j

ijj
j

i
j

ii  )())((   

 

which coincide with their eq. (6.14); in passing we note that our eq. (7.1b) emends a refuse present 

in their eq. (6.14) where the term j
j xv  is written as j

j Xv . In order to compare eq. (7.1a) with 

ours eq. (2.2b), we must substitute eq. (7.1b) into eq. (7.1a). In so doing we get 

 
k

kk
k

k
k

k
j

j
k

j
k

k
k

k xdbtvbatvbxdbatXtaT )()()(
||    

 

Comparison with eq. (2.2b) provides the sought results 

 

(7.2)   kkk dbH  ||
       

 kkk H
d

H
b

11 ||  

(7.3)  k
k

k
k vHavbaN          

n
vHNa k

k

1
  

 

note that in eq. (7.3), by means of which the quantity n  is defined, we have used eq. (7.2). 

 

8. Comparison with our approach  

The approach we followed in ref. [3] consists in starting from the frame transformation (2.2) and 

in imposing two experimental results: (a) the constancy of the light speed  

 



 24 

traveling along closed path (Michelson-Morley experiment) and (b) the account for the transverse 

Doppler effect. Precisely, we have shown that condition (a) leads us to the transformation 

 

(8.1a)  k
k xHtNT   

(8.1b)  )(
2

tvx
nn

X jj
j

i
j

ii 
















  

 

where, as usual, 22 /1/1 cv . Note that  eqs. (8.1) only account for the Michelson-Morley 

experiment; comparison with eq. (7.1b) yields 

 

(8.2)  
n

b
2

 ,  
n

d


  

 

Accounting now also for the transverse Doppler effect is tantamount to setting n  and hence 

relations (8.2) reduce to 

 

(8.3)  b ,  1d  

 

In this last case the matrix j
iS is identical to that involved in the Lorentz transformation. 

 

Two comments are in order. First, equations (7.3) and (8.2) show that all the three quantities  

)(va ,  )(vb ,  )(vd  are known as far as the single function )(vn  is known. Second, in ref [3] we 

have proved that condition n  has also an interesting mathematical meaning, namely that of 

rendering the determinant of the frame transformation (8.1) unitary, a condition usually imposed 

on coordinate transformations. 
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