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Summary. --  The transformation law for a first-order differential system under 
Cartesian-coordinate transformation is deduced and the concept of the relevant 
symmetry group is made precise. Also, it is proved that both the conservative 
structure and hyperbolicity of a system are preserved. The case of linear elasticity is 
examined in details. 

PACS 02.90 - Other topics in mathematical methods in physics. 
PACS 03.40.Kf - Waves and wave propagation: general mathematical aspects. 

1.  - I n t r o d u c t i o n .  

In the theory of wave propagation, it is usually assumed that the field is 
represented by an n-dimensional column matrix U, whose dependence on time t and 
on Cartesian space coordinates xp, p =  1,2, 3, is determined by a first-order 
differential system of the form[l] 

(1.1) A0 3U +AP 3U = B;  
~t ~xp 

the n • n matrices A ~ A p and the n-dimensional column vector B depend on U and, 
possibly, on t and xp; the summation convention is assumed throughout. It is one of 
the most remarkable results of the theory that the propagation speeds and the 
polarization vectors are evaluated algebraically by the sole knowledge of the matrices 
A ~ and AP--see, e.g., [1,2]. The important case of second-order differential systems 
is embodied into the theory through the result that every second-order system can be 
cast into an equivalent first-order system by augmenting suitably the number of vari- 
ables [3]--for a detailed investigation on the link between such two systems see [4]. 

Suppose now that a differential system describes the behaviour of a physical 
phenomenon; accordingly, the equations of the system are necessarily tensorial in 
character. Thus, when the differential system is written in the form (1.1), the entries 

(*) The authors of this paper have agreed to not receive the proofs for correction. 
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of the column matrix U are either scalars or tensors of any rank. A problem arises: to 
analyse how the column matrix U and the matrices A ~ and A p transform when 
passing to a different Cartesian-coordinate frame. Indeed the answer to this problem 
is not immediate in that the entries of U collect together objects possessing different 
tensorial behaviour. 

Therefore, a preliminary result must be deduced which consists in determining 
and analysing the transformation law for the field U (sect. 2). Then, in sect. 3, we 
arrive at the transformation law for the quantities A ~ A p and B; the case of 
conservative systems is also investigated. The results so obtained allow us to give a 
precise definition of the group of invariance for system (1.1). The bidimensional wave 
equation is exhibited as an example of isotropic system. Section 4 shows that 
coordinate transformation does not affect hyperbolicity. Finally, in sect. 5 we prove 
that the symmetry group of the system governing linear elasticity coincides with the 
crystallographic group of the elastic tensor. 

2. - n-th order orthogonal matrices. 

Assume that a physical phenomenon is described by the differential system (1.1). 
This means that we have built up U by suitably rearranging into a column matrix the 
components of all tensors, which are the unknowns of the problem. Implicitly, this 
procedure defines a mapping between the index A = 1, ..., n, which labels the entries 
UA of U, and the indices which select the components of all unknown tensors. Of 
course such a correspondence is fLxed arbitrarily once for all. 

Suppose now that we transform the space coordinates according to the law 

(2.1) xi = Q~px~ , 

where Q is a 3 • 3 orthogonal matrix, namely 

(2.2) Qip Qjp = ~ij ; 

for further reference, we denote by Orth the group of 3 • 3 orthogonal matrices. 
Because of transformation (2.1), the components of the unknown tensors in the new 
frame are obtained by acting linearly on the old components. Therefore, also the 
entries of U must transform linearly; so it is possible to set 

(2.3) U = ~-~ U, 

for a suitable n • n matrix 2 .  Since all tensors transform independently of each 
other, every subset of entries of U--corresponding to the components of a single 
tensor--transforms without involving the other entries. Consequently, the matrix ~2 
possesses necessarily the following block structure: 

(2.4) 2 = 
0 
! 

N b . . . . .  0 | 

: "'" : I ' 

where the non-vanishing blocks Ma, Nb . . . .  , Pc are suitable square matrices of order 
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a, b . . . . .  c, respectively. It is obvious that when we consider scalars the correspond- 
ing block in L2 is simply the number 1, whereas in the case of vectors the block 
coincides with the matrix Q itself. Let us deduce the expression of the block for 
second-rank tensors. 

The components Tij of a second-order tensor T transforms according to the 
formula 

T i j  = R i jpq  Tpq , 

by adopting the convenient notation 

(2.5) Ri jpq  = Qip Qjq . 

Now the components of T, when embodied into U, are essentially relabelled by the 
index A which runs on a suitable subset of { 1, ..., n}; for convenience we denote such 
a correspondence by the mnemonic notation ( i j ) ~ A  r { 1, ..., n}. In view of (2.2) and 
(2.5) we have 

(2.6) R(ij)(pq)  R(kl)(pq) = Qip Qjq Qkp Qlq = ~ik ~jl = ~(ij)(kl) , 

where, by definition, 

1 for (i j )  = (kl), 

~(ij) (kl) -~ 0 otherwise. 

Therefore, by introducing the correspondence (i j ) ( p q ) , - , A B ,  relation (2.6) takes the 
significant form 

(2.7) RAcRBc = ~AB , 

RAB being the entries of a 9 • 9 matrix R. With reference to (2.4), the square matrix 
R is just the block that corresponds in ~2 to a second-rank tensor. Finally, on 
denoting by the superscript T the transpose of a matrix and by Ia the identity matrix 
of order a, relation (2.7) can be written as 

(2.8) R R T = 19. 

This means that the matrix R is orthogonal. Moreover, the group structure of Orth is 
preserved. Indeed, if Qi, Q2 e Orth, then we have 

(2.9) R l p q  = Qilp Q1 , R~.pq = Qip2 Qjq . 

so, on defining Q = Q~Qe, in view of (2.5), (2.9), it is an easy matter to check 
that 

_ 1 ~ R ~ R  ~ (2.10) R(i j ) (pq)  - R( i j ) (rs)R(rs) (pq)  C:~ R --  . 

These results are easily extended to higher-rank tensors. 
In conclusion, we are able to prove the following 

Theorem 2.1. Suppose that the tensorial variables of a physical problem are 
collected into the column matrix U. Then, for every orthogonal matrix Q, there exixts 
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a correspondence Q ~ - 9  such that  the n • n matrix -9 is orthogonal, 

(2.11) _g QT = In ,  

and the group structure of Orth is preserved, namely if Q1__,-9 1, Q2_ o - 9  2, then 
Q1Q2__>-9 1-9 2 

Proof. Note first that  choosing U is mathematically equivalent to fLx the index 
correspondence between the components of the tensors and the index A of the entries 
of U. Moreover, since the result (2.8) applies to any block appearing in (2.4), all the 
matrices Ma, Nb, ..., Pc are orthogonal. Therefore 

. ~ 9 - 9  T : 

( M~M~ 
0 

0 

NbN T 
. . . . .  0)(0 ib ~ 

�9 . .  : : : " . .  : 

which proves (2.11). The second part  of the theorem is a straightforward consequence 
of formula (2.10). [] 

I t  is 
namely 

(2.12) 

an obvious consequence of (2.11) that  the matrix -9 is unimodular, 

det-9 = _+ 1. 

3. - T r a n s f o r m a t i o n  l a w  for  f i r s t - o r d e r  s y s t e m s .  

Consider a first-order differential system of the form (1.1). When the space 
coordinates transform according to eq. (2.1), we readily check that  

- - -  - Q i p - -  ; 
3xp 3xp 3~ci 3xi 

hence, in view of (2.3), system (1.1) takes on the form 

a5 35 ii0 +Ai 
~t a~i 

where 

(3.1) /io = -9AO2 W , / i i  = Qip-9Ap-9 T , B = -gB. 

I t  is interesting to analyse what happens in the particular, but important, case of 
conservative systems. Recall first that  a conservative system is a quasi-linear 
differential system of the form[l]  

3fo 3fp 
(3.2) - -  + = B ,  

at ~xp 
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where the n-dimensional column matrices fo and fP are functions of the field U. Of 
course, system (3.2) can be cast into the form (1.1) by setting 

(3.3) A ~  ~fo A p = 3f___~p 
~U ' ~U 

The following theorem establishes the transformation law for conservative sys- 
tems. 

Theorem 3.1. Consider a conservative system written both in the form (3.2) and 
(1.1). Under the coordinate transformation (2.1), the matrices A ~ and A p transform in 
accordance with (3.1) if and only if the column vectors fo and fP transform as 

j~o= ~gf0, ~ i=  Q i p 2 f p .  

Proof. For ease in writing, consider the condition involving fo only; the proofs of 
the other formulae are in fact identical. On assuming that AO= ~9AO2 T, relations 
(2.3) and (3.3) implies 

o A O =  2 3f~ 9T = ( 2 f 0 )  . 2 T =  ~ _ ~ ( 2 f  ); 
aU 

hence ~o = 2 f o .  
On the contrary, if we assume that 9 ~~ ~gf ~ we get 

Ao O(  ) 
~ ]  - ~ ( . 2  f ~ ~2 T =~2AO 2 T 

thus proving the theorem. [] 

The significant consequence of theorem 3.1 is that a conservative system remains 
conservative under the coordinate transformation (2.1). 

The transformation law (3.1) allows us to make precise the meaning of group of 
invariance associated with a given first-order differential system. Specifically, 
system (1.1) is invariant under the group G r Orth, if for every Q ~ G, 

(3.4) A o = ~9AO2 T , A; = Qpq..gAp~ T , B = . 2 B  ; 

in particular, system (1.1) is isotropic if relations (3.4) hold for every Q e Orth. It 
should be pointed out that relations (3.4) imply also a restriction on the dependence of 
A ~ A p, and B on the field U; for instance A ~ must satisfy the condition 

A~ U, Qipxp, t) = ~2A~ xp, t ) 2  T 

As an example of an isotropic system, consider the bidimensional wave equa- 
tion 

~t 2 ~x 2 3y2 " 
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On defining the column vector 

U T = ( ~ p  ~p Op)  
~t ~x ~y ' 

we can write the equivalent first-order system in the form (1.1), where A ~ is the 
identity matrix and 

A I =  
0C2 ] 

- 1  0 , 

0 0 

A 2 =  

o o 
0 0 

- 1  0 

Since the most  general 2 • 2 orthogonal matrix Q is of the form 

cos0 sin0] 

Q =  - s i n 0  cosOJ' 

we have 

0 e [0, 27:), 

2 = 
o 01 

cos 0 sin 0 , 

- s i n 0  cos0J 

in that  ~ / ~ t  is a scalar, whereas ( ( ~ / 3 x ) ( ~ / ~ y ) )  is a vector. I t  is an easy mat ter  to 
verify that  relations (3.4) are satisfied for every choice of 0. In conclusion, the 
equivalent first-order system is isotropic. 

4. - H y p e r b o l i c i t y .  

For  any fLxed direction n, In l--1, a characteristic speed ~ associated to the 
first-order differential system (1.1) is a solution to the algebraic equation �9 

(4.1) det (AVn, - ~A ~ = 0, 

where np stands for the component of n. For  any real )~, define the polarization vector 
H as the n-dimensional column vector which is a non-trivial solution to the algebraic 
homogeneous system 

(A  ' np - )~A ~ I I  = O . 

The differential system (1.1) is called hyperbolic in the t-direction if[l] 

a) de tA ~ ~ 0, 

b) the characteristic speeds ~ are all real, 

c) the set of the polarization vectors H is a basis for R n 

It  is a straightforward mat ter  to show that hyperbolicity is preserved under 
transformation (2.1). Specifically, owing to the transformation laws (2.3) and (3.1) 
and on account of (2.11), we have 



ON THE COVARIANCE OF FIRST-0RDER DIFFERENTIAL SYSTEMS 837 

a) de tA ~ = det A ~ and hence de tA ~ ~ O; 

moreover 7ii~ti - ~7i  ~ = _ 9 ( A P n p  - ~A~ T SO that 

b) ~=~, 
c) / I  = ~ H ,  and hence the vectors [ / a r e  a basis for R ~. 

An important class of hyperbolic systems is that of the symmetric systems in the 
sense of Friedrichs and Lax[5]. Precisely, system (1.1) is symmetric if all the 
matrices A ~ and A p are symmetric and A ~ is positive-definite. Obviously, a symmetric 
system is hyperbolic; the importance of such a definition is due to the fact that the 
Cauchy initial-value problem is well posed[5]. Trivially, the transformation (2.1) 
makes symmetric systems into symmetric systems. 

We end this section by pointing out a result concerning isotropic systems. In 
accordance with (4.1), the characteristic speeds ~ depend on the propagation direction 
n, besides on U, xp, and t. However, when system (1.1) is isotropic, the characteristic 
speeds ~ are necessarily independent of n--cf. [6]. To prove this result, whatever the 
direction n is, it is always possible to change the coordinates via the transformation 
(2.1) in such a way that xl, say, coincides with the direction n. In so doing, formula 
(4.1) becomes 

det(A1 _ ~ o )  = 0. 

Now we know that ~ = ~ and that, in view of the isotropy, /~1 = A  1 and ~0 =A0;  
therefore, for every n, the problem of finding the characteristic speeds consists 
always in solving the same equation 

det(A 1 - )~A ~ = 0, 

which loses any track of n. The conclusion is that, for isotropic systems, the speeds 
are independent of n. 

5. - An example :  l inear  e las t ic i ty .  

It is the purpose of this section to discuss in some detail the property of covariance 
exhibited by the system governing linear elasticity; in particular, we aim to prove 
that the invariance group of such a system is the crystallographic group which the 
elastic tensor belongs to. 

To this purpose, we remind the reader that the second-order differential system 
governing the behaviour of a linear elastic solid is the following [7]: 

3 2 up 3%q 
- -  - - 0 ,  (5.1) ~ 3t 2 ~xq 

where p is the (constant) reference mass density, up is the displacement vector, 
and %q is the stress tensor; as usual, linear elasticity is characterized by the 
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constitutive relation (Hooke law) 

~Ur 
(5.2) ~;q = Cpqr~ - -  , 

~xs 

where the t e n s o r  Cpqrs denotes the elastic constants. 
Now we need to reduce system (5.1) to a first-order system. Thus we first define 

the variables 

au; ~up 
Up ~ - - ~  , W p q -  ~Xq 

and then introduce the 12-dimensional column vector 

U T = (vp w~), 

where the Greek index runs from 4 to 12 and establishes a relationship ~ (ab) 
according to the scheme 

4-~-, (11) ,  5 ,--, (12) ,  6 o ( 1 3 ) ,  

7 o ( 2 1 ) ,  8 ~-, (22), 9 o ( 2 3 ) ,  

10,-~(31), 1 1 o ( 3 2 ) ,  1 2 o ( 3 3 ) .  

In so doing, system (5.2) takes on the conservative form (3.2) by letting f 0 =  U 
and 

where 

1 
~ r p  = - - T r p  , ~ a p  = ~F(ab)p = Va~bp �9 

In view of relation (3.3), system (5.1) can be cast into the form (1.1), where A ~ is the 
identity matrix, while A p can be written in a block form as 

(5.3) A p =  DP l K ;  ] .  

The entries of the matrices involved in (5.3) are explicitly given by 

whereas 

~ rp ~I2~p 
J ; ~  - - O, K ; ~  - - O, 

~v~ ~w~ 

D p s  - 
~ ' ~ p  ~[Y'(ab)p 
- -  ~ DP(ab)s -- _ _  -- ~as~bp ; 

3vs 3vs 

~ r p  
FPrz -- 

~wz 

3~Prp 1 ~Trp 1 
- -  =-'~ FPr(cd) -- Crpcd �9 

~W(cd) ~ ~Wcd 
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In conclusion, the matrix A p can be written in the form 

DPJ  0 ] "  

Note that the first three components of U form a vector, while the remaining ones 
are the components of a second-rank tensor; accordingly, the matrix ~ has the 
form 

In agreement with the transformation laws (3.1), previous formulae show that 

1 -  
D i D i ~',i --__ __ _ _  C j i c d  ; = , I j ( c d )  

therefore, as claimed before, we conclude that the system governing linear elasticity 
is invariant under the same group which leaves the elastic tensor Cijkt invariant. 
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