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1. Introduction 

One of the most qualified methods for modeling the physical reality 
consists in arriving at a suitable differential system which describes, in 
handy terms, the features of the phenomenon investigated. Especially when 
transient effects and wave propagation are of importance, hyperbolicity is 
regarded as an indispensable property of the differential system. As a matter 
of fact, hyperbolicity is a well established concept for first order differential 
systems[l, 2, 3]; however, it frequently occurs that the involved equations 
constitute a second order system for which the literature bears evidence of 
a lack of an intrinsic definition of hyperbolicity. Also for this reason, 
sometimes wave propagation is investigated without regard to hyperbolic- 
ity [4, 5]. 

So as to overcome this inconvenience, the overwhelming majority of the 
investigations concerning hyperbolicity is confined to first order systems; in 
so doing no generality is lost because of the result that, under suitable 
conditions, every second order system is equivalent to a first order o n e - -  
see, e.g., [1, p. 43]. In this optics, the original system plays the marginal role 
of generating the corresponding first order system, although passing from a 
second to a first order system can produce new features as, for example, the 
appearance of zero-speed waves, which are physically irrelevant. 

The purpose of this paper is that of investigating the connection 
between the second order and the equivalent first order system from the 
point of view of hyperbolicity and wave propagation. On adopting the 
current view that a second order system is hyperbolic provided that the 
equivalent first order one is, the main result to emerge from the present 
work is contained in Theorem 5.7 which gives an intrinsic procedure to 
check whether a second order system is hyperbolic. In arriving at such a 
theorem, a number of intermediate results are proved which it is worthwhile 
to mention. First, it is established that the number of zero-speed waves 
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which appear in passing from a second to a first order system is exactly 
d(s - 1), where d is the number of equations involved and s is the number 
of space coordinates. Also, the link between the polarization vectors arising 
from the second order system and the eigenvectors relative to the first order 
one--see  formulas (4.5) and (5.3)-- is  deduced. Finally, the Appendix 
contains some algebraic results, not readily found in textbooks. 

2. A second order differential system 

Consider a physical system 5 p, whose actual state is fully described by 
the vector field if, namely by the knowledge of its components r 
a = 1 , . . . , d  as functions of time t and of the space coordinates x i, 
i = 1 , . . . ,  s. As it happens in many physical situations, the behavior of 5 p 
is supposed to be governed by a second order quasilinear differential system 
of the form 

c~:~ ~ ~02~ p ~2~0~ (a, fl= 1 , . . . ,d~ ,  (2.1) 
8t 2 +(Ai)~ OxiOt+(AO)~ Ox~Oxj=O' \ i , j= l , . . . , s  / 

where the s matrices A ~ and the s z matrices A ~ can depend on the field ft. 
Let E be a moving surface of equation q~(x ~ . . . .  , x s, t) = 0. As usual we 

denote by n; the unit normal to E, and by 2 the normal speed of propaga- 
tion [2, 6]. On assuming that the field ~0 and its first derivatives are 
continuous whereas its second derivatives can suffer a jump discontinuity 
across E, the geometric and kinematic compatibility conditions establish the 
existence of a suitable vector quantity W, the polarization vector, whose 
components ~ satisfy [6, p. 506] 

cOxi cOxj_ H = ~'n~nj, 
I o:O  -n = - 

= 

the symbol ~.~ standing for the jump across E. On substituting such 
relations into the system (2.1) we arrive at the algebraic condition 

((A")~ - 2(A")~ + 226~)~ ~ = 0, (2.2) 

where A""=  AUninj and A, = A~n~. Equation (2.2) admits non trivial solu- 
tions for the variables tW provided that ). is a characteristic speed, namely 
a solution to the characteristic condition 

det (A" - 2A" + 22Ia) = 0, (2.3) 
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where Id denotes the identity matrix of order d. A property of the previous 
algebraic equation (2.3) is stated in the following 

Theorem 2.1. If det A " #  0 then Eq. (2.3) does not admit 2 = 0 as a 
solution, and vice versa. Otherwise, 

r a n k  A nn >- d - m, (2.4) 

where m is the multiplicity of the root 2 = 0. 

Proof. Set, for convenience, 

M ~  n", M I = A  n, M 2 = I a .  

Lemma A.4--see  Appendix--establishes the validity of the relation 
/ 

det(A n~ - 2A n + 22Ia) = ~ 2 k l . . .  2 ka det(Clk~... C~), 
k 1 . . .  k d 

where k l , . . . ,  kd take values 0, 1, 2 while C~ r denotes the r-th column of the 
matrix M kr. It is a straightforward matter to realize that the coefficient of 20 
is exactly the quantity de tA~:  therefore detA ~ # 0  is a necessary and 
sufficient condition to inhibit the appearance of the root 2 = 0. As to the 
proof of (2.4), note that, in general, the coefficient of 2 p is a suitable linear 
combination of minors of A n~ whose order is d - p  and higher. Conse- 
quently, if rank An"= d -  r, then Eq. (2.3) has the form 

,vP2 _ = 0, 

where P2d-~(2) is a polynomial of degree 2 d -  r in ;~. The statement of the 
theorem is now obvious. [] 

The approach developed so far is good for a rough analysis of wave 
propagation essentially because we do not know whether the Cauchy 
problem is well posed or not. A definite answer to this problem is given in 
the case of first order differential system where it is a prominent result the 
fact that the Cauchy problem is well posed for strictly hyperbolic and 
symmetric hyperbolic differential systems [7]. So, our program is that of 
reducing the second order system to a first order one, imposing the 
hyperbolicity of the latter system, and analyzing what are the consequences 
on the original second order system. 

3. The equivalent first order system 

As is well known, the system (2.1) can be cast into a first order system 
by suitably augmenting the number of independent variables [ 1]. Precisely it 
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is possible to prove that the solution to a Cauchy problem for the second 
order system coincides with the solution to the equivalent Cauchy problem 
for the first order system; it is evident that there are Cauchy problems for 
the first order system which do not correspond to any Cauchy problem for 
the second order system. 

In the present case, define the new variables 

u ~ ~ 0  ~ 

a t '  

O X  i ' 

and collect them into a single column vector U defined by 

1 d u T = ( u '  . . . U  ~ Vl �9 . . V f  . . . V  �9 . . V s ) ,  (3.1) 

where the superscript T denotes transposition�9 Owing to the presence of the 
mixed derivative of qJ ~ with respect to xi and t, there is not a unique way of 
arriving at the expression for the equivalent first order system. Precisely, if 
we adopt the view that O2O~/Oxi Ot = Ou~/Oxi, system (2.1) transforms into 
the quasilinear first order system 

OUA a,i A c~U8 
0--7- + ( ) B ~ = 0 ,  A , B = I , . . . , D , [ D = d ( s + I ) 1 ,  (3.2) 

the D x D matrix s~r i beinggiven by 

/ (A')~ (A'i)~ . - .  (AO~\ 

d ~ = (  -6~6~" Jg" ) ' (3.3) 

\ -6~6~ 
where Y denotes the sd x sd null matrix. 

On the other hand, the choice O2~/8x~8t--8v~/8t corresponds to a 
different form of the equivalent first order system, namely 

8U B OU ~ 
(~0)~j ~ + (sr ~ = 0, (3.2') 

where the D x D matrices ~0, ~ i  are 

o 6 ~  . . .  o 
~ 0  
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0 

-6s6~ 

(A~i)~[ ...[ (ASi)~ 

Y 

The system (3.2') can be cast into the form (3.2) through a left multi- 
plication by the inverse of the matrix ~0 .  Since the matrix ~,0 is 
upper triangular, it is easily recognized that det ~ 0  = 1 and that its inverse 
is 

] -(Ag  
= 0 o 

�9 . , ,  �9 

0 

The equivalence between system (3.2) and (3.2') follows from the relation 

As a conclusion, it is not restrictive to consider, from now on, the system 
(3.2) as the first order equivalent system to (2.1). 

In the first order formulation too, it is possible to look at solutions 
whose first derivatives may suffer jump discontinuities across the surface 
E. The relevant geometric and kinematic compatibility conditions now read 
[6] 

OXi ]I 

~t J =--2I-IA' 

where 17 is a suitable column vector. Accordingly, it is possible to deduce 
the following algebraic condition 

( (d")~  - 26~)I-I B = 0, (3.4) 

where d "  = d"n~. Nontrivial solutions to Eq. (3.4) for the variables 17A are 
ensured by the characteristic condition 

d e t ( d "  - 2ID) = 0. (3.5) 

Hyperbolicity is tantamount to the claim that Eq. (3.5) admits D real 
eigenvalues 2(1) , . . . ,  2(D), not necessarily distinct, and that the correspond- 
ing set of eigenvectors r i o ) , . . . ,  I-I(D) is a basis for R D. 
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4. Zero-speed waves and polarization vectors 

The present task is that of relating the two formulations of the same 
problem by the point of view of the hyperbolicity. Specifically, we want to 
derive a precise link between the characteristic speeds and between the 
polarization vectors �9 and the eigenvectors H. 

Consider first the characteristic speeds which are the solutions to the 
algebraic equations (2.3) and (3.5), respectively. Owing to the expression 
(3.3) for the matrix s~", we can write 

/ ( A " ) ~ - 2 6 ~  (A1")} ... (A S , ) } \  / 
d "  - 2ID = { --n16} - A  ) ' (4.1) 

\ 
--ns6} 

where A is a sd x sd  diagonal matrix whose diagonal elements are all equal 
to the quantity 2. Owing to the structure of (4.1), Theorem A.3 is applica- 
ble. Comparison of (4.1) with (A.4) shows that, also in the present case, S 
corresponds to a matrix of order d; hence formula (A.3) yields 

d e t ( d  n - 2ID) = ( - 2 )  a~'- 1) det(A,~ _ 2A n + 22ia). (4.2) 

Equation (4.2) shows that passing from the second order system (2.1) to the 
equivalent first order system (3.2) causes the appearance of zero-speed 
waves, whose number is d ( s -  1); it is evident that the material waves 
associated to such speeds have a purely formal meaning. 

Look now at the link between the polarization vectors �9 and the 
eigenvectors 1-I. In accordance with (3.1), for convenience we set 

^1 ^d ^1 I IT=(z~ l . . .~a  V 1 " ' ' V l " ' ' V s ' ' ' t ) J ) .  (4.3) 

In view of (4.1) and (4.3), the algebraic system (3.4), which determines the 
eigenvectors 11, explicitly reads 

- 26~)u + ( A i " ) ~  = 0, (4.4) 
( . - n ~ u  ~ - 2 ~  = O. 

To solve system (4.4), we assume first that 2 r 0. Calculating #T from (4.4)2 
and substituting into (4.4)1 show that the quantities ~ satisfy Eq. (2.2). 
This enables us to choose 

whereby, in view of (4.3) and (4.4)2, 

II  = \ _n iUf~ j  . (4.5) 
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Suppose now that 2 = 0. In this case, condition (4.4)2 implies ~" = 0; as 
a consequence, the restrictions on the components  (4.3) of  FI are provided 
by (4.4)~, 

(A i , , ) ~  = 0. (4.6) 

5. The concept of hyperbolicity for second order systems 

The concept of  first order hyperbolic systems is well established and 
most of  their properties are well understood [2, 3]. It is then natural  to 
define second order hyperbolic systems in accordance with the following 

Definition 5.1. A second order differential system is hyperbolic when the 
corresponding first order system is hyperbolic in the usual sense. 

The precise link between second order and the corresponding first order 
system, deduced previously, allows us to perform a step-by-step analysis of  
the consequence o f  Definition 5.1. To this end we need to prove some 
preliminary results. On setting 

~r = (A 1" �9 �9 �9 AS"), (5.1) 

we have 

Lemma 5.1. If, for a second order system, the multiplicity of  the 
characteristic speed 2 = 0 is m,  then hyperbolicity implies that 

rank d = d - m. (5.2) 

Proof. If  the second order system possesses the root  2 = 0 with multi- 
plicity m, then we proved in Sect. 4 that the equivalent first order system 
possesses the root  2 = 0 with multiplicity d ( s  - 1) + m. Hyperbolicity im- 
plies that d ( s -  1 ) +  m eigenvectors 17 are associated with 2 = 0 whose 
expressions are to be evaluated via Eq. (4.6). Since the quantities ~37 are ds 

in number,  the previous requisite is satisfied provided that rank d = d s -  

[d(s - 1) + m], as indicated in Eq. (5.2). [] 

F rom Theorem A.5 and Lemma 5.1 it follows that 

rank Ann < rank d =~ rank A n" < d - m. 

Comparing this result with Theorem 2.1 we gain the following result. 

Theorem 5.2. For  a second order hyperbolic system the rank of  the 
matrix A nn is exactly d - m, where m is the multiplicity of  the characteristic 
speed 2 = 0. 
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The number of the polarization vectors is fixed by the following 

Theorem 5.3. For a second order hyperbolic system any characteristic 
speed ), with multiplicity m is associated with m linearly independent 
polarization vectors ~ .  

Proof. In the case 2-r 0, Eq. (4.5) readily shows that the linear inde- 
pendence of the rI's is mathematically equivalent to the linear indepen- 
dence of the Ws. On the other hand, the polarization vectors associated 
with the characteristic speed 2 = 0 are determined by Eq. (2.2), which now 
reads 

(A"") = 0. 

It is a consequence of Theorem 5.2 that there are exactly rn independent 
polarization vectors �9 associated with the m roots 2 = 0. D 

Since the polarization vectors �9 belong to a d dimensional vector space, 
Theorem 5.3 shows the validity of the following 

Corollary 5.4. A second order hyperbolic system cannot possess more 
than d coinciding characteristic speeds. 

Theorem 5.3 implies a suggestive form for m eigenvectors 17 associated 
with the m roots 2 = 0. Indeed, it is possible to write m solutions to Eq. 
(4.6) in the form 

where ~ denotes the components of any of the m linearly independent 
polarization vectors associated with the m roots 2 = 0. Accordingly, we 
can write 

(0) 
r I  = _ n i  W ~ . (5.3) 

In conclusion, the expression (4.5) is valid for all the 2d eigenvectors FI 
which correspond to the 2d values of the characteristic speeds relative to 
the second order system. 

Since the eigenvectors rI, associated with a first order hyperbolic 
system, are linearly independent, we can prove the following 

Theorem 5.5. The polarization v e c t o r s  L I J ( p ) , p - - - - 1 , . . . ,  2d, associated 
with a second order hyperbolic system, span ~d. 
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Proof. Assume that  the first 2d eigenvectors II(p), relative to the associ- 
ated first order  system, take the form (4.5). Hyperbolici ty implies that  

2d 
Kp n(p)  = 0 = o. (5 .4)  

p = l  

Suppose now that  the polarization vectors ~P(p) do not  span R e, namely 
there are only c < d linearly independent  ~P(q), q = 1 , . . . ,  c. Accordingly, 
there exists a suitable set of  coefficients Prq such that  

lY~l(r) = ~ Prq I~./(q), r = c + 1 , . . . ,  2d. (5.5) 
q = l  

On account  of  (4.5), the system for the linear independence of  II(p) explicitly 
becomes 

Kfi%)%p  =0, 
p = 1 (5.6) 

2d 

p = l  

where 2(p) is the characteristic speed associated with the polarization vector 
W(p). In view of  (5.5), condi t ion (5.6) takes the form 

gq,~,(q) tr/~(q) -t- E Prq tP(o) = O, 
q = l  r=c+l q 1 

) fgqLtg(q) "~- E Kr erqlll(q) = 0 .  
q = l  r = c + l  \ q = l  

The linear independence of  kIJ(q) implies 

K q}C(q) -~- E Kr,~(r) Prq = O, 
~=~+1 (5.7) 

2d 

Kq -~- E KrPrq ~-- O, 
r = c + l  

where the index q = 1 , . . . ,  c is not  summed.  It is evident that  (5.7) is a 
system of  2c equat ions in the 2d > 2c unknowns  xp : the system is evidently 
underdetermined which violates condi t ion (5.4). [] 

Indeed, the linear independence of  the eigenvectors H(p) implies not  only 
Theorem 5.5 but  also a more  involved condit ion.  To make  this claim 
explicit, we point  out  that  Theorem 5.5 requires c = d. In other words, the 
set of  polarization vectors can be divided into two sets: the elements of  the 
first set are the d linearly independent  polarization vectors, which will be 
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denoted by the symbol tI-'(~), and the elements of the second set are the 
remaining d polarization vectors, which will be denoted by the symbol E(~). 
With this notation Eq. (5.5) reads 

d 

E(~) = ~ P~qJ(~), 
f l = l  

where P~  is now a d • d matrix. Also, we denote by 2(~) the characteristic 
speeds associated with T(~) and by ~,(~) the characteristic speeds associated 
with E(~). This notation allows us to re-write system (5.7) in the form 

I : k~2(~) ~1 h~2(~)P~ = 0, 
(5.8) 

~k~+ ~= h~Pt~=O, 

where the unknowns Xp are rearranged according to the relation 

( t e l ,  �9 �9 �9 , / ~ d ,  / r  t ,  �9 �9 �9 , t C 2 d )  = ( k l ,  �9 �9 �9 , ka, hi,. �9 ha). 
The system (5.8) can be written conveniently in matrix form as follows. 

Define the diagonal matrices 

�9 . .  " . .  A =  , F =  , 

and the row vectors 

K=(k, '"ka) ,  H=(h, '"hd).  
Then, system (5.8) becomes 

The linear system (5.9) admits only trivial solutions, as required by condi- 
tion (5.4), if and only if 

det(FAp ~ ) r  

On account of Theorem A.3, we have thus proved the following 

Theorem 5.6. For a second order hyperbolic system the relation 

det(FP - PA) # 0 (5.t0) 

holds true. 
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We are now in a position of stating a complete characterization of 
hyperbolicity for second order system. 

Theorem 5.7. On using the notation of this section, a second order 
differential system (2.1) is hyperbolic if and only if 

(i) the characteristic speeds, solutions to (2.3) are all real; 
(ii) any characteristic speed with multiplicity m is associated to m linearly 

independent polarization vectors, solutions to (2.2); 
(iii) the 2d polarization vectors span Rd; 
(iv) the matrix F P -  PA, involved in (5.10), is non-singular; 
(v) if the system (2.1) admits the characteristic speed 2 = 0 with multiplic- 

ity m, then the matrix ~r defined in (5.1), is such that rank d = d - m. 

Proof. That conditions ( i ) - (v)  are necessary has been proved already. 
As to their sufficiency we observe that conditions (i)-(iii) give a meaning to 
the matrix FP - PA. Condition (iv) implies the linear independence of the 
2d eigenvectors relative to the corresponding first order system and associ- 
ated to the polarization vectors via (4.5). Finally, condition (v) guarantees 
the linear independence of the eigenvectors which correspond to the d ( s  - 1) 
zero-speed waves which unavoidably appear in passing from the second 
order to the first order system. As a consequence the associated first order 
system is hyperbolic thereby implying, through Definition 5.1, the hyperbol- 
icity of system (2.1). [] 

An interesting remark to Theorem 5.7 is provided by the following 

Theorem 5.8. Condition (v) of Theorem 5.7 is automatically satisfied 
when the second order system does not allow for vanishing characteristic 
speeds. 

Proof. Owing to Theorem 2.1, the absence of vanishing characteristic 
speeds is mathematically equivalent to the condition det A n"~ 0, namely 
rank Ann _~_ do It is a consequence of Theorem A.5 that rank ~ '  = d since the 
rank of d cannot exceed the number d. Hence condition (v) is trivially 
satisfied. [] 

6. Comments and conclusions 

Theorems 5.7 gives a complete and definite answer to the question posed 
by the title of this paper. In particular it allows us to identify a second order 
hyperbolic system without having explicit recourse to the associated first 
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order system. However, whereas conditions ( i)-( iv)  involve essentially the 
characteristic speeds and the polarization vectors of the second order 
system, condition (v) is more peculiar because it keeps track of the fact that 
the associated first order system possesses unavoidably d(s - 1) zero-speed 
waves besides the characteristic speeds of the second order system. As a 
consequence, it is possible to design second order systems which are not 
hyperbolic simply because condition (v) is violated. An example of such 
systems is provided by the equations 

f O 21~r 1 //020 I 021~r lX~ 
--~-tT- - a 2~--~75-x 2 + ~-~-~) = 0 '  (6.1) 

o2~2 o202 o202 / o20, o20,~ 
- - ~  + f ~--~t  + g Oy ot -- a2~r-~--~-x 2 + s--~s ) = 0, 

where a, f, g, r, and s are functions of 01 and 0 2. Comparison with (2.1) 
yields 

( - a 2  00) ( - a 2  00) A 11 = A 22 = A 12 = 0; 
- -  r a  2 , _ s a  2 , 

(o ~ o) 2=(o ~ Og) 
As a consequence we have 

(, :) ~ 0) 
, - a2z , 

having used the shorthands 

h = fn l  + gn2, z = rn 2 + sn~. 

It is a straightforward matter to ascertain that the characteristic speeds are 

2(1 ) = 0, 2(2 ) = h, 2(3) = a, •(4) = --a, 

and that the associated polarization vectors take the form 

W(o=W(2)= , W(3)= 1 ' W(4~= I ' 

where 

a 3 + _ h  

c + - -  
a z  

It is matter of calculation to prove that conditions (i)-( iv) are satisfied, 
whereas condition (v) is violated provided that r ~ s. Of course, this means 
that the first order system associated to (6.1) is not hyperbolic. 
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We conclude this paper by showing that, in the case of a single second 
order equation, Theorem 5.7 reduces to the usual definition of hyperbolic- 
ity [1]. In detail, consider the equation 

~2~r *i ~2~r ~2~r 
Ot 2 + 2a ~ + A U - -  - 0; (6.2) 

axi axj 

it is evident that Eq. (6.2) represents the most general form for a second 
order equation, setting aside lower order terms, which are inessential in this 
context. Trivially, we have d = 1, hence the two polarization vectors neces- 
sarily coincide. As a consequence, on denoting by 2o) and 2~2) the two 
characteristic speeds, condition (iv) implies that 

2(1) ~ 2(2~. (6.3) 

Since the characteristic condition (2.3) reads 

2 2 - -  2A"2 + A "  = 0, (6.4) 

relation (6.3) and the reality of the two characteristic speeds is mathemati- 
cally equivalent to 

(An) 2-- Ann > O, 

or, explicitly, 

ninj (A iAJ -- A o) > O. 

Owing to the arbitrariness of the direction nt, we arrive at the result that the 
matrix A iA j -  A • must be positive definite. All these conditions represent 
the usual definition of second order hyperbolic equations. 

A. Appendix 

Recall first the following 

Lemma A.1. Consider a D x D matrix written in the bordered form 

where M is a (D - 1) x (D - 1) matrix, C is a (D - 1) column matrix, R is 
a (D - 1) row matrix, and 2 4:0 is a real number. There holds the relation 

act(  M C)  = ~. de t (M - ~-~R-R). (A.1) 

The proof of this result is standard--see, e.g., [8, p. 265]. For convenience, 
denote by ord M the order of the square matrix M. Formula (A.1) can 
conveniently be re-written in accordance with the following 
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Corollary A.2. There holds the relation 

det(  
Suppose now that a D x D matrix has the special (bordered) form 

(b a)  A2, 
where A is a square diagonal matrix whose diagonal elements are all equal 
to the nonvanishing number 2. In this case Corollary A.2 implies the 
following 

Theorem A.3. There holds the relation 

(S ] P)=2~176 det Q 

If ord A - ord S >- 0, formula (A.3) holds also when 2 = 0. 

(A.3) 

Proof. On letting d = ord S, write the matrix (A.2) with the following 
index notation 

cz, fl=l,...,d ) 
(S=~ P=j'~, i , j = l , . . . , o r d A  , 

\Q'a 2(~iJ'] d + ord A = D 

(A.4) 

and apply Corollary A.2. Since for the matrix (A.4) we have 

where the number of zeros is equal to ord A - 1, Corollary A.2 implies 

det Q ] X = 21-(D-1)det  QiB 2(~ij ' 
where now is understood that the indices i and j run from 1 to d -  1. 
Applying this procedure as many times as the order of  A provides the 
required result. The final part of the theorem follows trivially from the 
continuity, with respect to 2, of the both sides of  Eq. (A.3). [] 

Consider s square matrices M ~ , . . . ,  M s of  order d. For any ordered 
array (n~ ... ns), set 

M n = n~M 1 + . . .  n s M  s. 

we have the following 
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Lemma A.4. The determinant of  the d x d matrix M n is a linear 
combination of  the form 

d e t M n =  ~ nkt'"nkadet(C~'"'C~a), 
k 1 . . .  k d 

where kl, �9 �9 �9 kd take values from 1 to s while C~ r denotes the r-th column 
of  the matrix M km. 

The proof  is an immediate extension of  the well-known result that when all 
the entries of  a column (row) of  a square matrix are binomials, its 
determinant is the sum of the determinants of  the two matrices obtained 
from the original one by replacing, in an orderly way, the binomials with 
their terms, see, e.g., [9, p. 135]. 

Consider the d • sd matrix ~ defined as 

~ / =  (M~ �9 �9 �9 M~). 

We have the following. 

Theorem A.5. There holds the inequality 

rank M n ~< rank ~[. 

The proof  is a straightforward consequence of Lemma A.4. 
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Abstract 

On adopting the usual view that a second order differential system is hyperbolic provided that the 
equivalent first order one is, a theorem is proved which offers an intrinsic procedure to check 
hyperbolicity of second order systems. In deducing such result, the link between second order and first 
order systems is analyzed in detail and a number of relevant results is proved. 
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