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Introduction

A wave obliquely impinging on the boundary between two different materials generate:
-eflected and refracted waves. Calculation of such emergent waves is usually performed ir
avo steps [1.2]. First, Snell’s law is used for determining the speed and the propagation
dreetion of the cmergent waves. Second, the emergent amplitudes are evaluated by im
weaing the relevant boundary conditions. The peculiar difference between the two step:
s that the former 1s a general consequence of the geometric properties of the interaction
xhereas the latter accounts for the dynamic aspects of the specific problem.

From a mathematical point of view this procedure exhibits unsuspected drawback:
and pitfalls due mainly to several algebraic difficulties. Precisely, the determination of th
amplitudes always results in solving a linear algebraic system; notwithstanding this, th.
rank of such a system can hardly be determined at a very general level and, what is more
such a rank can depend on the value of the angle of incidence (see [3] for the case of linea
crystals). On the other hand, also for linear wave propagation Snell’s law leads usuall
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o nonlinear cquations; conscquently, even determining the munber of the cmergent waves
seems to be a formidable task.

In this note we present a physical example exhibiting all the promment mathematical
catures which are encountercd when solving Snell’s law. Specifically, we determme the
wdmissible refracted waves propagating in rutile (TiOy), a tetragonal crystal belonging
o class 4/mmum: the explicit caleulation of both the propagation speeds and the angles
of refraction in terms of the angle of incidence allows us to point out some not obvious
wspects concerning Snell’s Taw.

A peculiar result 1s obtained in conjunction with evanescent waves, namely waves
whose amplitude vanishes exponentially at infinity. We show that evanescent waves can
se generated whose propagation speed takes on complex value. Unlike standard evanescent
wvaves having a complex angle of refraction but a real speed of propagation, we explicitly
srove that waves traveling at a complex speed are compatible with a flow of energy acros:
he boundary.

Elastic waves
The propagation speeds 17 of plane (exponential) waves traveling along a divection n,
i a hyperelastic crystal with a stiffness tensor ¢,y and mass density p are the roots o
the secular equation 1.4
-2 .
Ty = pV 70,0 = 0. (1
where the acoustic tensor
F],,/ = Cprsgliets
15 a svmmetric and positive definite tensor. We asswme that, for any real frequency w. the
elastic displacement is given by the real part of the quantity

wy = U, exp iu)(

where the polarization vector II, is an cigenvector of the acoustic tensor I'), associatec
with the eigenvalue pV?, whereas the amplitude ¢ is determined by suitable boundary o
initial conditions.

Consider wave propagation i crystals belonging to the tetragonal system and supposc
that the propagation takes place in the plane (001) perpendicular to the tetrad axis
Choose the v and y axes as the [100] and [010] directions respectively, and let (. o, 0) he
the components of the unit vector 1, so that 2 4 0% = 1. Then the nonvanishing 17s ar
given by [4. p. 190]

2 ) ~ o 2 .,
AT 2oy i, Dip = cyioip — a7 B icu + cympu o,

- 2
Dip = oo 4 cp

P2
r _- . EAT 2 I, -~
22 = Cp2apftT 07 - 2012 40, Iyz = cog03.

In the casc of rutile we have the following experimental data 3]
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ﬁ

=4.25-10%
p=4.25-10"—3,

Jong with the exact condition ¢;;1, = 0. Accordingly, the roots of the secular equation

1) are
2pV2 = Wi(p)- 10", (3)
pVE = Ta3 = 12.5- 10", ()

vhere
W2(p) = 46.7 + 1/62.41 + 5226.36( 2 — pt); (5)

1s usual, the three propagation speeds are defined to be the positive roots of (3) and (4).
The polarization vectors relative to the previous speeds are easily calculated. We have

—37.0u0
M* = | 194+ 7.94% - LW} (6)
0
0
=10 (7
1

in agreement with the current terminology, the speed V3 corresponds to a shear wave
>olarized along the direction [001], while V_ and V, are the propagation speeds of &
quasishear and a quasilongitudinal wave, respectively, whose polarization vectors belong
:0 the plane (001).

Snell’s law

Suppose now that rutile occupies the upper half space y > 0 whereas in the lower hal
space 1s present an elastic crystal where the slowest speed is lower than the slowest speec
in rutile. Suppose also that an incident wave, traveling at speed 14, along the directiol
(Hincs Tines0)y frine > 0, oy > 0, collides with the boundary so that the refracted waves i1
rutile propagate and are polarized in the plane (001) as described in the previous section
According to Snell’s law [2,4], the quantity V/u takes the same value for every wave

namely
(K) _ ‘/inc (8
K emergent Hine

Since the refracted waves are polarized in the plane (001), we get the first resul
that no waves traveling at speed V; are generated. Accordingly, look at the two wave
propagating at speed Vi. In terms of the quantity « defined by the relationship

‘/inc 105
= — a~1084.650, >0, 9
Hinc \% 2P (
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Snell’s law (8) can be written as

W. |
s A (10
T

a4

Substitution of (10) into (5) gives rise to an equation for u4 and to an equation for p_
>oth of which can be solved by isolating the radical terms and squaring. In so doing the
;ame equation for x4 and u_ is arrived at; consistently, the subscripts + will be omitted
The resulting equation is

(5226.36 + a*)u* — (5226.36 + 93.40%)u® + 2118.48 = 0. (11

Solutions to (11) provide the possible values of the quantity y. The admissible i’s, alony
vith the corresponding speeds, are to be found from (10) with the only constraint that
n view of (9), the ratio W/u must be positive. For further reference, we point out tha
:ondition (10) implies also that the quantities Wi (u) take on complex values if and onl;
f u becomes a complex quantity.

Determination of g4

It is a consequence of (11) that every solution y depends on the value of «, a quantit;
which is ultimately determined by the angle of incidence. A qualitative discussion abou
the behavior of the function u = p(a) can be done with the aid of the graphic method fo
solving Snell’s law—see, e.g., [4, p. 203]—which relies on the use of the so-called slownes
surfaces, namely the locus of the tips of the vectors n,./V. However, it should be notice
in advance that this method provides only those real values of u satisfying the conditior
u < 1. The other values single out the evanescent waves, which must be considered 11
order that the amplitudes of all emergent waves can uniquely be determined—a discussios
on this point is presented in [6].

In the case at hand, the slowness
curves of rutile, i.e. the cross section
of the slowness surfaces of rutile rela-
tive to the speeds W, by plane (001),
are shown in fig. 1, where four points
are marked by a tick. The explicit
values of the quantity a correspond-
ing to them are easily calculated. The
value a4 is determined by the inter-
section of the slowness curve W, with
the horizontal-—or vertical—axis; ac-
cordingly it turns out that

ay = Wy (1) = Wi (0) a 7.39.

Similarly, the value a_ corresponds to
the intersection of the slowness curve

W_ with the horizontal axis; hence = = S
ay Qe

a_ = W_(1) = W_(0) =~ 6.23. Fig. 1 Slowness curves for rutile




SOLVING SNELL'S LAW 91

Che value oy is determined in the following way. Let po be such that Wi(ug) = W_(po) =
16.7. In view of (5) we obtain pg &~ 1.012. Then condition (10) implies that

ag =~ 6.79.

Ne remark that, for a = ay, the two polarization vectors (6) coincide.
Finally, the value of . is the real value of « for which the discriminant of (11) vanishes.
Ne get
a, ~ 4.16.

t is worthwhile to notice that a. plays the role of a critical threshold in that, for o < «..
he quantity p takes on complex values.
The relevance of the previous points is that they define five intervals, determining the
jualitative behavior of the solution g to (11) as follows.
ay < a: there are two distinct real values of p lower than 1; as fig. 1 shows, one
speed belongs to the slowness curve Wy and the other to the slowness curve
W_.

ap < o < ay: there are two real solutions for p, but only one is lower than 1. For p < 1
the speed belongs to the slowness curve W_ whereas for p > 1 the speec
can be calculated by means of the function W, {y).

o = ag: as before, but for po = p(ag) > 1 we have Wi(po) = Wo(uo).

a_ < a < ag: as before, but from now on both speeds must be determined through the
function W_ ().

@ < o < a_: there are again two distinct real values of p lower than 1, both speed:
belonging to the slowness curve W_.

a = o,: the two real values of & lower than 1 now coincides.

a < a¢: the quantity g becomes a complex number.

Note that, for a = a., the slowest speed V., in rutile is reached; precisely we have

Vilow =~ 3550 m/s.

Evanescent waves

As s well known. evanescent waves occur typically when u takes on real values greate:
than 1. Here. however, we have exhibited a physical example in which g is allowed tc
become even a complex number; i turn, fhis implies that also the corresponding speed ¥
possesses a nonvamshing mmagmary part. This last section 1s devoted to investigate sucl
a circumnstance.

The first problem that arises is how to choose two appropriate solutions out of th
four ones relative to (11). Indeed this is a matter of convention; on denoting the real par
of a complex quantity £ by the symbol R(¢), we stipulate that R(u) > 0 so as to retai
the continuity of the function pa).

To fix notation, we set

r=pay tipe), 0 =0(1) +10(3), V =Vy +1V). (12
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Since o is a real and positive quantity, Snell's law (8) and condition (9) give

Vo Vi
H(1) H¢2)

vhereby condition g ;) > 0 implies V{;) > 0.
Look now at the quantity (2); on using relation (13), ultimately we get

4 L a - i o
ur:UHrexp{w Py B1T@) ~ )00 y}x

(
Vay  sfy iy

-/ ' ¢ 1) + Wino
(?xp{uu<t b, Ry o e Ta) y>} (14)
Viny Vi Fiy F e

The appearance of the complex quantities (12) 1s completely justified by (14) which shows
;hat the function R(u,.) represents a wave traveling at speed

(’/"(21/) + /lf_g))//L(l)

"Vplmsc = "f(l]

4

(1, + 127+ Loy + 12,0 (2) )
along the (real) direction

U T+ H2)02))02r

2

(pidyy + i)+ anooy + jyayo))?

the amplitude of this wave decrease to zero as iy — oo provided that juy) and o, do not
vanish simultancously, thus ruling out the case j¢ < 1. Of course, the vanishing of the
amplitude at infinity requires that

//(”(7(3) = J(2)0(1) < 0:

in view of 07 = 1 — 4?, this condition is tantamount to choosing a2y < 0.

We are now interested in determining whether there is an average flow of energs
across the boundary in conjunction with the wave (14). Such a flow can be calculated as
the integral of the time average of the clastic Povuting vector

O Ju, Ou
Pr:_T‘xr = TSp P2 5
Tor T gy, o (15.

over the boundary [4, p. 173]. Therefore, it suffices that we evaluate the time average o
the quantity (15). On denoting time average by angle brackets, it is easy to prove that
for arbitrary time harmonic functions fexp(iwt) and gexp(iwt), [7, p. 57]

(R[f expliwt)] Rlg exp(ewt)]) =

27

2mfw
[ R esption) Rlgexpiwt) e = 1(7g%), (16
Q
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1 star denoting the complex conjugate. Since the unit normal to the boundary is N, = 6,4
n view of (14)-(16) we arrive at the formula

— g
(PN} = (P2} = Lo |L{|2exp{2w b FOTE) @) y}
Vol t el

ety R
F1)9¢2) — H(2)%(1)
My T Ha)
A more convenient form for the formula (17) can be gained as follows. As the acoustic
sensor is positive definite, we have
cazp2 IS, = (csrpg Ne NIITIL, = Ty, ITTTT, € R.
Also, on letting I, = &, +i¥ ., we find that
caap RITI,) = (er122 + c1212) (21 P2 + U1 05).
Accordingly, (17) reduces to

L i g -~ {L o
(Py) = ,lw2!11|26xp{2 P M%) = F2)%0) J}X
2
Viy iy iy

ngpg%(inznp) . (17}

) Fyoa) + )

[(anz + e (@1 Py + U W) + coapa ILIL, 10 (18]

3 3
"(1) ) +,“'('))

We are now iu a position to discuss the three cases po< 1, g > 1, and pocomplex. Tr
‘he first case o) =0, o) =0, and ¥, = 0. Therefore in accordance with (18) we have
[Py) £ 0, ie. energy flows across the boundary. On the other hand, when ¢ > 1 we lave
2y = 0 and o = 10(y). In this instance it follows from {6} that &, is proportional to d,
and that W, = —37.0p0(5)1,. Collecting these results we find that (Pp) = 0, namely for
a standard evanescent wave there is no flow of cnergy across the boundary.

Finally, consider an evanescent wave where p takes on a complex value. It follow:
from (18) that (P,) # 0; in other word, energy is allowed to flow across the boundary. A:
a result, evanescent waves with a complex g are compatible with a flow of energy acros:
the boundary, whereas standard evanescent waves are not.
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