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Introduction 

A wave obliquely impinging on the boundary between two different materials generate~ 
-eflected and refracted waa,es. Calculation of such emergent waves is usually performed i~ 
;wo st cp.~ [1.2]. First,  Snell's law is used for determining the speed and the propagt~tiol 
ii~,~ct.i~ (~f the emergent waves. Second, the emergent amplitudes are evaluated by im 
,,:..iug :l~c r(qevant boundary conditions. The peculiar difference between the two step,. 

!hat ~he former is a general consequence of the geometric properties of the interaction 
a, hereas the latter accounts for the dynamic aspects of the specific problem. 

From a mathenaatical point of view this procedure exhibits unsuspected drawback.. 
~nd pitfalls due mainly to several algebraic difficulties. Precisely, the determinat ion of th, 
~mplitudes always results in solving a linear algebraic system; notwithstanding this, th, 
croak of such a system can hardly be determined at a very general level and, what  is more 
such a rank can depend on the value of the angle of incidence (see [3] for the case of linea 
crystals). On the other hand,  also for linear wave propagation Snell's law" leads usuall: 
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() ilolllillear ( 'quations; c(ms('(lU('nt~ly, (?yon (let(qlllining the l l l l l l l } ) (q"  ( ) f  t ,h( '  Olll('l~(!II[ \V;/Vt'S 
;ceres to b(' a fo rmidabh '  task. 

In this note  we present a phy.~ica] cxalnple  exhibi t ing all the l) lomhlent ma themat i ca l  
'caturcs which ato encount.mcd when solving Slwll's law. Specifically: we (h,te1minc t.h¢ 
~dlnissible refracted wax'os t)lOpagat, ing in futile (TiO2),  a te t ragonal  crystal  bchmginp 
o class 4 / m m m :  the explicit cnlculatioll  of  bo th  the p ropaga t ion  speeds and tho ~mglcs 
)f refract ion in terms of tim angle of incidence allows us to point  out  somo not obvi()us 
~spects concerning Snell 's law. 

A peculiar  result  is ol)t;dncd in con j ,mct ion  with evanescent waves, mmmly \vavc.~ 
a'hose ampl i tude  valfish('s oxponc, , t ia l ly  at  infinity. We show that  cvanescel~t waves cn~ 
)e genera ted  wh()sc l)rOl)agati(m q)ee(t takes on complex vahle. Unlike s t anda rd  cvmm~ct.nt 
,raves having a complex auglc of refract ion but  a r('al speed of prol)agation,  wc cxi)]icit] 3 
)rove tha t  waves traveling at a c()mi)h~x Sl)(Wd arc (:Olni)atibl(: with a flow of energy ;~cr()> 
;he boundary .  

Elastic waves 

The  l~lOl)agation Sl)CCds l ~ of plane (CXl)On(mtial) waves traveling ahmg a dirocti(m r/, 
in a hyperclast ic  t rys t ,1  with :~ stift'nc.ss tensor  (),,*u and mass <h'nsity p arc the l()()ts (): 
the secular cqu.atioll [l,-1] 

{Fj,~ / - pI"-'~p, l l  - 0. (11 

where th(" ncoustic tensor 
Fpq -~ ('prsq~l, rTt,~ 

is a symmet r i c  and positive dofinite tensor.  \Vo assume that ,  for any roal t>equency ~,. tl~( 
c~lastic d isplacement  is ,<iv(ql by the lcal  par t  of the quant i ty  

ur =ZdIJ , .cxp z~' t 1 ~ , i -- ~ - ] ' ,  (2 

where the polar iza t ion vector I1,. is an cigenvect, or of the acoustic tensor Fpq associate( 
with the eigenvalue pV ~, whereas the ampl i tude  M is de te rmined  bv suitable b o u n d a r y  ()1 
initial conditions.  

Consider  wave propaga.tioll hi crysta ls  behmging  to the te t ragonal  sys tem and SUpl)OS( 
that  the p ropaga t ion  t, akcs place in the plane (001) perpendicular  to the tet.rad ;ixis 
Choose the x m~d V axes as the [100] and  [010] directions respectiwdy, and let (#, a, 0) 1)( 
the componcl~tS of the unit v e c t o r  7~,., s() tha t  / t  2 4,- 0 .2 1. Then  the nonvanishin2; i"s ~l( 
g'ivcn by [4, p. 190] 

F j l  --<:~Flt/-* + cj-,i_,'~' + % lz l ; / - ' r -  F~2 :-:: c i j i e ( / / - ' - , ~ )  + (~ !1'-*-' }- cl:zJ~)//or- 

F22 ~-- c I 2 1 2 / S  -F C I l l l ( T  2 - 2~:1~12/to. F33 ~ C2323. 

In the case of futile we have the following exper imenta l  da t a  [5] 

N N 
c1111 = 27.3.  1 0 1 ° " '  C l 1 2 2  = 17.6. 10 ~° 

i1~2 ~ 11.12 

c1,,1,, 1 9 . 4 -  10 l°  N _ _ = c , ~ : ~ g a  = 12.5. 101° N 
1 1 1 2  ~ _ ,  - 11_12 
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p = 4.25- 10 a kg 
113_ 3 ' 

Jong with the exact  condition c1112 = 0. Accordingly, the roots  of the secular equation 
1) are 

2 p v :  = w (#)lO '°, 

pV~ = Fa3 = 12.5 .10 TM, 

(3) 

(4) 

ghere 
W:~(#) = 46.7 4- X/62.41 + 5226.36(# 2 - #4); (5) 

ts usual, the three  propagat ion speeds are defined to be the posit ive roots of (3) and (4). 
['he polar iza t ion vectors relative to the previous speeds are easily calculated. We have 

_37.0Fie T ) 
- (6; II,~ = 19.4 + 7.9t/2 

0 

H = (71 

in agreement  with the current terminology, the speed I/:a corresponds to a shear way( 
)olarized along the direction [001], while 1,"_ and V+ are the propagat ion  speeds of 
luasishear  and a quasilongitudinal wave, respectively, whose polar izat ion vectors belon~ 
;o the plane (001). 

Shell 's law 

Suppose now that  rutile occupies tile upper  half space y > 0 whereas in the lower hal 
space is p lesent  an elastic crystal where the slowest speed is lower than  the slowest spee( 
in rutile. Suppose also that  an incident wave, traveling at speed 1/~,,c along the directim 

(Fq,,c, ai .... 0), tq,,~ > 0, cri.c > 0, collides with the boundary  so tha t  the refracted waves it 
futile p ropaga te  and are polarized in the plane (001) as described in the previous section 
According to Shell 's law [2,4], the quanti ty V/tl takes the same value for every wave 
namely 

e m e r g e n t  P i n e  

Since the refracted waves are polarized in the plane (001), we get the first resul 
tha t  no waves traveling at speed Va are generated. Accordingly, look at the two wave 
propagat ing  at speed V+. In terms of the quanti ty a defined by the relationship 

Vi.c 105 
#i,c x / ~  a ~ 1084.65a, a > 0, (9 
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;nell's law (8) can be wri t ten as 

W+ W_ 
-- (I0 

#+ #- 

Substi tut ion of (10) into (5) gives rise to an equation for #+ and to an equat ion for #_  
)oth of which can be solved by isolating the radical terms and squaring. In so doing th~ 
;ame equation for #+ and #_  is arrived at; consistently, the subscripts + will be omit ted 
l~he resulting equat ion is 

(5226.36 + a 4 ) ~  4 - -  (5226.36 + 93.4a2)# 2 + 2118.48 = 0. (II 

~olutions to (11) provide the possible values of the quantity #. The admissible #'s,  alonl 
~¢ith the corresponding speeds, are to be found from (10) with the only constraint  that  
n view of (9), the rat io W/# must be positive. For further reference, we point out tha  
:ondition (10) implies also that  the quantities W+(#) take on complex values if and onl: 
f # becomes a complex quantity. 

Determinat ion of # 

It is a consequence of (11) that  every solution # depends on the value of a ,  a quantit: 
~¢hich is ul t imately de termined by the angle of incidence. A quali tat ive discussion abou 
~he behavior of the function/~ = # (a )  can be done with the aid of the graphic method  fo 
~olving Snell's law--see,  e.g., [4, p. 203]--which relies on the use of the so-called slownes 
retraces, namely the locus of the tips of the vectors n,-/l/. However, it should be notice( 
m advance that  this me thod  provides only those real values of # satisfying the conditio~ 
u < 1. The other  values single out the evanescent waves, which must be considered il 
~rder that  the ampli tudes of all emergent waves can uniquely be d e t e r m i n e d - - a  discussioJ 
an this point is presented in [6]. 

In the case at hand,  the slowness 
curves of rutile, i.e. the cross section 
of the slowness surfaces of rutile rela- 
tive to the speeds W+ by plane (001), 
are shown in fig. 1, where four points 
are marked by a tick. The explicit 
values of the quant i ty  a correspond- 
ing to them are easily calculated. The 
value a+ is determined by the inter- 
section of the slowness curve W+ with 
the hor izonta l - -or  vert ical--axis;  ac- 
cordingly it turns out tha t  

a+  = VV'+(1) = VV'+(0) ~ 7.39. 

Similarly, the value a _  corresponds to 
the intersection of the slowness curve 
W_ with the horizontal axis; hence 

o~_ = W_(1) = W_(O) ,~ 6.23. 

1 

1 1 

~ +  ~ -  

Fig. 1 Slowness curves for rutile 
O~ c 
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['he value  c~0 is d e t e r m i n e d  in t he  fo l lowing way. Le t  #0 be  such t ha t  W+(#0)  = W - ( # 0 )  = 
L6.7. In view of (5)  we o b t a i n  #0 ~ 1.012. T h e n  cond i t i on  (10) impl ies  t h a t  

O~o .-~ 6.79.  

We r e m a r k  t h a t ,  for c~ = a0 ,  the  two  p o l a r i z a t i o n  vec tors  (6) coincide.  
F ina l ly ,  the  va lue  of a¢ is the  rea l  va lue  of  a for which  the  d i s e r i m i n a n t  of (11) vanishes .  

Ne get 

a~ ~ 4.16. 

it is wor thwhi l e  to  no t ice  t h a t  a~ p l a y s  t he  role  of a c r i t ica l  t h r e s h o l d  in t h a t ,  for a < ac:  
.he q u a n t i t y  t~ t akes  on complex  values.  

T h e  re levance  of the  p rev ious  p o i n t s  is t h a t  t hey  define five in terva ls ,  d e t e r m i n i n g  the 
t ua l i t a t i ve  b e h a v i o r  of the  so lu t ion  # to  (11) as  follows. 

a +  < a,: t he re  are  two d i s t i nc t  real  va lues  of  # lower t h a n  1; as  fig. 1 shows,  one 
speed  be longs  to the  s lowness  curve  W+ and  the  o the r  to  the  s lowness curv(  
14,2. 

c~0 < a < (t+: t he re  are two real  so lu t ions  for #,  b u t  only  one is lower t han  1. For  # < 1 
the  speed  be longs  to  the  s lowness  curve W_ whereas  for # > 1 the  speed 
can  be  ca l cu l a t ed  b y  m e a n s  of  the  func t ion  14/'+(#). 

a ' =  a'0: a.s before ,  bu t  for tto = #(~o) > 1 we have 14/'+(#0) = 147_(#0). 

a _  < a' < a'0: as before,  bu t  f rom now on b o t h  speeds  nms t  be  d e t e r m i n e d  t h r o u g h  the 
func t ion  I4C (#).  

a~ < c~ _< o _ :  t he re  a re  aga in  two d i s t i n c t  rea l  values of # lower t h a n  1, b o t h  speeds 
be long ing  to the  s lowness  cu rve  14C. 

a. = a~: the  two real  values  of  # lower t h a n  1 now coincides.  

ct < ac:  the  q u a n t i t y  # becomes  a c o m p l e x  number .  

Note  tha.t, for a = a~, the  s lowest  s p e e d  V~low in ru t i le  is reached;  prec ise ly  we hav( 

V~low ~ 3550 m / s .  

E v a n e s c e n t  w a v e s  

As is well known,  evanescent  waves  occu r  t yp i ca l ly  when t ~ takes  oll real  values  great, e: 
t h a n  1. Here.  however,  we have e x h i b i t e d  a ph:,sica! e xa mp le  ip. which p is a l lowed t( 

become  even a complex  number :  in t in 'n,  ~his impl ies  tha t  also the  c o r r e spond ing  speed  I. 
possesses  a nonvan i sh ing  i m a g i n a r y  pa.rt. T h i s  last sect ion is devo ted  to investiga.te sucl  
a c i r cums tance .  

T h e  first  p r o b l e m  t h a t  ar ises  is how to choose  two a p p r o p r i a t e  so lu t ions  ou t  of th, 
four  ones r e l a t ive  to {11). Indeed  th is  is a m a t t e r  of convent ion;  on d e n o t i n g  the  rea l  p a r  
of  a complex  q u a n t i t y  { by  the  s y m b o l  ~ ( { ) ,  we s t i pu l a t e  t h a t  ~ ( # )  > 0 so as to retai~ 
the  con t inu i ty  of  t he  f lmct ion  # ( a ) .  

To fix n o t a t i o n ,  we set 

# : #(1) ~- i// '(2), G = (7(1) ~- i0"(2), V : E 1  ) ~- i E 2  ). (12 
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~ince a is a real and  posi t ive quanti ty,  Shell 's  law (S) and  condi t ion  (9) give 

1}~1 + i l } , )  = lO84.65o(ff(~)+itq2)) 4==> 1 0 8 4 . 6 5 a -  
t*(1) #(2) ' 

(;3) 

vhereby condition #(1) > 0 implies V(1 ) > O. 
Look now at the quantity (2); on using relation (13), ultimately we get 

ltr 
# ( l )  tz(1)a(~) - #(2)Or(i) } 

= ~4/]£Ir exp CO I~ l) [.t{,) 71'~2) /./ X 

{ (' "i,, exp ico t~'(~ ) if(l) ffO)a(1)+ff(2)a(2))} (14) 
- -  - - t l ?  "V( l ) /'t~l) - [ - # ~ 2 )  ~'/ " 

£he  a p p e a r a n c e  of the complex quant i t ics  (12) is comple te ly  just i f ied by (14) which show.~ 
;hat  the  func t ion  ?P(u,.) represents  a wave travel ing at  speed 

~;,~ ...... = l . i j  I .(~:(: ' )., 
I! {- tt~2))2 -F (/g(i)O(l) q- #(2)0-(2) 

"dong the  (real)  dil"octicm 

(It( l) + 1'~.(2))(kl,- @ (,//.(1)0"(1) @ /,t(2)O-(2))~32r- 
" '  = / 7 : ;  ., 

1~I) @ 1/(2) )2 _}_ (f/(l)O-(]) JK 11(2)gr(2) )'2 

~110 a m p l i t u d e  of this wave decrease to zero as ~/ ~ ~,  p rov ided  tha t  it(e) and or(2) (lo not 
vanish s imul taneous ly ,  thus ruling out the ('asc it < 1. Of  course: the vanishing of th( 
amp l i t ude  at  infinity rcquirc.s tha t  

It(])a(.2)-. /*(2)cr(1) < O: 

in view of (7-' = 1 - I/'-, this condit ion is tail tanl()unt to choosing ~r{2 ) < 0. 
\'Vc are now interes ted in de te rmin ing  whc the r  there  is an average  flow of energ 3 

across the  bo,mda.ry  in conjunct ion with t.hc wave (14). Such a flow can be calculated as 
the in tegra l  of  the tim<, nvcragc of the oh, st.it Poynt.ing vec tor  

Ou~ O~q, Ou~ 
P,- = - T,,.  Ot - c'w'v Ox q c)t (151 

over d w  b o u n d a r y  [4, p. 173}. There%re ,  it suffices theft we eva lua te  the t ime average  o: 
the q u a n t i t y  (15). On denot ing t ime average by angle  bracke ts ,  it is easy to prove tha t  
for a r b i t r a r y  t ime  haamonic  functions f exp(/c~,t) and  g exp( iwt ) ,  [7, p. 57] 

( ~ [ f  ,~xp(i~t)] ~[g e.,:p(icot)]) = 

co f 2:,r/cv 
271- dO 

~?[fc×p(icot)] ~[9exp(icot) ]  dt = ½~(f9*), (16 
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s tar  denoting the complex conjugate. Since the unit  normal to the boundary  is N,. = £.-, 
n view of (14)-(16) we arrive at the formula 

(P~N~) = {P2} = l  9 { #(,) #O)cr (2 ) -  #(2)~(1) } 
g ua-lMI 2 exp 2w V(,) #~1) 7 /,t{2 ) y__ X 

~(1)gr(1) -{- #(2)0"(2) 
#(1) cs2pl~}~(ii;iiv) -[- Cs2p2 ~)~( II ; rip )-{- 
~11) #~1) -1- #~2) 

#(1)O"(2) -- #(2)O"(1) ] 
(171 

A more convenient form for the formula (17) can be gained as follows. As the a.cousti( 
;ensor is positive definite, we have 

klso, on letting l-I,. = ~ + i ~ ,  we find that  

c ,2vlR(II :II , , )  = (c1122 -t- c1212)((I)1(I32 ~- vlJ1 ~I/2). 
kccordingly, (17) reduces to 

l oo2,/~/[2exp{2a.,/~t(1) ' t t (1)°(2)--#(2 '°( l )  } 
(P2) = 2- V(I) #~1) 7,/t~2) V x 

#(1) [(c1122 q-c1212)(~1)1(~)2 q-II'l~'IL,)~-#(l)O-(l)4' #(2)0"(2) c.s21/2I~[:IIp], ( l S  
- + #(,,, 

We are now in a position to discuss the three cases t* < 1, t* > 1, and # complex, h 
;he first case P.(2) = 0, or(21 = 0, and qJ,. = 0. Therefore in a.ccordance with (18) we haw 
(P2) ¢ 0, i.e. energy flows across the l)oundarv. On the other hand, when t* > 1 we h~,v( 
a(2) = 0 and o = iCr(2 ). In this instance it fol{ows f lom (6) that  ~,. is proportion;d to 62, 

_~nd that  ~,. = -37.0#c~(2)bl,.. Collecting these results we find that  (P2) = 0, namely fol 
stmadard evanescent wave there is no flow of energy across the boundary.  

Finally, consider an evanescent wave where # takes on a complex value. It tbllow.~ 
[rom (18) that  (P2) ¢ 0; in other word, energy is allowed to flow across the boundary. A.~ 

result, evanescent waves with a complex t~ are compat ible  with a flow of energy a(;ros~ 
~he boundary,  whereas s tandard  evanescent waves are not. 
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