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Starting with a thorough and self-contained account of transformations between inertial 
observers, the most general frame transformation is derived, which fully incorporates the 
Michelson-Morley experiment and the transverse Doppler effect. Lorentz and Marinov trans- 
formations are presented as two particular cases. On a rigorous mathematical ground, the 
paper presents a theory, more general than special relativity and with three degrees of 
freedom, that completely agrees with a well-established phenomenology. 0 1989 Academic Press, 

Inc. 

1. INTRODUCTION 

Since Einstein’s celebrated 1905 paper [ 11, the theory of special relativity has 
become more and more important; today every sound physical theory assumes, as 
background, the validity of Einstein’s approach. Two arguments strongly support 
such a theory. The first one is the complete agreement with experiments and the 
power of the theory in its prevision of new effects. On the other hand, special 
relativity is a self-consistent mathematical theory with an amazing aesthetic appeal. 

In this paper we critically review the experimental bases of special relativity by 
trying to answer the question whether the most famous experiments, which have 
contradicted the classical Galilean view, necessarily imply special relativity. With 
this in mind, we aim at drawing the general mathematical implications which follow 
from the Michelson-Morley experiment (see, e.g. [2, 33) and from the transverse 
Doppler effect [4]. We direct the paper at physicists interested in a rigorous 
mathematical deduction of the consequences coming from a few natural physical 
assumptions and from well-established experiments. However, we shall refrain from 
attaching any particular physical meaning to our mathematical results, because we 
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believe that their physical relevance must be proved not by formal arguments, but 
by firm experimental tests. Devotees of special relativity, as are we, will be content 
of regarding the paper as an original derivation of the classical Lorentz transfor- 
mation. 

To carry out our program, we first determine the form of the most general frame 
transformation preserving uniform rectilinear motions. Section 2 shows that such a 
transformation is a projective one. An obvious physical request forces the transfor- 
mation to be linear. The general kinematical properties implied by a linear transfor- 
mation are presented in Section 3. Assumptions about light propagation are stated 
in Section 4, while Section 5 explicitly calculates the light velocity relative to a 
generic inertial observer. On the basis of the results so obtained, the most general 
transformation embodying the Michelson-Morley experiment is determined in Sec- 
tion 6. As a result, four parameters turn out to be undetermined. Appeal to the 
transverse Doppler effect fixes one of such quantities; mathematically we show that 
this is equivalent to requiring that the coefficient matrix of the transformation has 
unitary determinant (Section 7). Lorentz transformation is obtained in Section 8 by 
imposing that light speed is always c. Nevertheless, a different possibility of choos- 
ing the parameters leads to the Marinov transformation [S, p. 331 which allows for 
absolute simultaneity. 

2. THE MOST GENERAL TRANSFORMATION 
PRESERVING UNIFORM RECTILINEAR MOTIONS 

One of the fundamental blocks to build up classical physics is the assumption 
that there exists a class of privileged observers-inertial observers-characterized 
by the following 

Principle of mechanical inertia. The motion of isolated mass-points relative to 
every inertial frame is rectilinear and uniform. 

As a first step, we determine the most general transformation among inertial 
frames, namely the most general transformation making uniform rectilinear 
motions into uniform rectilinear motions. 

Consider two arbitrary inertial observers 9$$ and B and denote by xoL and X” the 
space-time coordinates of & and 9, respectively. In the following greek indices run 
from 0 to 3, Latin indices from 1 to 3 and x0 = ct, X” = CT; in principle the constant 
c need not be the light speed in vacuum, it suffices that c is a universal constant 
speed. Assume that space and time coordinates of 9$ and 9 are related by the 
frame transformation 

X” = X”(xO, x1, x2, x3). (2.1) 

As shown by Fock in [6, p. 231, the principle of mechanical inertia holds true 
provided that the transformation (2.1) satisfies the condition 
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a%@ axa -- axSaxA-~PQ+*i~~ (2.2) 

where the quantities tiB are certain functions of the coordinates xa. 
Indeed the functions ijs are fully determined by the system (2.2) itself. Explicitly, 

multiplication by axB/aX” and summation over CI and /I yield 

The problem of finding the explicit form of transformation (2.1) between two 
inertial frames is now a purely mathematical one, which consists in solving the 
differential system (2.2). 

THEOREM 2.1. The most general transformation making uniform rectilinear 
motions into uniform rectilinear motions is a projective transformation. 

Proof: Consider the integrability conditions for Eq. (2.2) 

a3x” a%* 
axfiaxAaxp = axb axfl ax” . 

From (2.2) calculate explicitly the derivatives, use (2.2) again to get 

and then multiply (2.4) by ax’/aX’. By letting first v = /I and subsequently v = p and 
performing the implied summations, the integrability conditions (2.3) reduce to 

Note in passing that (2.5b) is a consequence of (2.5a). 
According to (2.5b), there exists a scalar function $ such that 

*a=-$. 

(2.5b) 

(2.6) 

Inserting (2.6) into (2.5a) and introducing the auxiliary function w  = exp( ---I+$) 
allow Eq. (2.5a) to be written as 

a20J =o 
axa axfi ’ 
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which implies that w  = Q + rfixB, where 0 and r, are arbitrary constants. Hence 
$, = -T,/w. Substitution into (2.2) yields the differential conditions 

ao-n _ (). 
&iqg- ’ 

therefore the quantities OX” depend linearly on x8, whence 

(2.7) 

where A” and B; are arbitrary constants. 
In conclusion the projective transformation (2.7) represents a necessary condition 

for the validity of the principle of mechanical inertia. That Eq. (2.7) is also sufficient 
follows from direct calculation. Precisely, the rectilinear and uniform motion 

transforms, according to (2.7), into the rectilinear and uniform motion 

x’ = Mip - N’M’ Z:N’ - AM’ 

Ch@-A@ +.Zh@-dMacT’ 

where 

W=A”+B,*X’, N”= B$‘+ cB& 

z = Q + r,x’, A=f,&cr,, 

thus providing the explicit expressions of the transformed quantities. 1 

Two remarks are in order. First, as is well known [6], adding the constancy of 
light speed to the principle of mechanical inertia implies necessarily the linearity of 
transformation (2.1). In full generality Theorem 2.1 shows that leaving aside such a 
requirement enlarges the class of transformations preserving mechanical inertia. 
Besides, this amends the assertion that mechanical inertia is equivalent to the 
linearity of the transformation, as sometime claimed in the literature, see, e.g., 
[3, p. 71. Second, it is obvious that Theorem 2.1 is a purely mathematical result. 
Indeed physics suggests that linearity must be restored through the unavoidable 
request that the transformation (2.7) be not singular at points having finite coor- 
dinates. 

3. PROPERTIES OF A LINEAR FRAME TRANSFORMATION 

In agreement with Theorem 2.1, the last remark of the previous section forces us 
into assuming the linearity of the frame transformation between the inertial obser- 
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vers P0 and 9. In addition, we lose no generality by considering the homogeneous 
transformation 

Y = A; x8; (3.1) 

also we remove inessential rotations of the spatial axes by requiring that 

lim A;=$, 
d - 0 (3.2) 

ui standing for the velocity of 9 as measured by Fo. For convenience, we split (3.1) 
into its spatial and temporal parts 

xi = sjxj + wit, (3.3a) 

T= Hjx’ + Nt; (3.3b) 

the splitting (3.3) amounts to writing the matrix LIZ in block notation as 

N cH 
A= 

k-l--> . w/c s 

As to the inverse transformation, we put /1~ ’ = L and stipulate that 

n ch 
A= 

(t). 
> 

w/c s 

this kind of notation allows us to adopt a duality rule that in any given equation 
majuscules and minuscules may be interchanged. In the sequel, we shall use freely 
this rule without any further reference. 

We are now interested in qualifying the transformation (3.3) by imposing general 
physical requirements. To fix terminology, we denote by Vi the velocity of P0 as 
measured by 9; note carefully that, since we are not assuming any principle of 
relativity, in general - Vi will be different from ui, cf. subsequent Eq. (3.7). 

As a first requisite, we demand that (3.3) transforms “space into space and time 
into time preserving time direction”; more formally we assume that 

det S#O, N>O. (3.4) 

Note that conditions (3.4) are consistent with the assumptions (3.2). 
A further property follows from kinematics. Consider a point P moving with 

respect to Y. according to the law x’=x’(t); obviously its velocity is 

ui = dx’fdt. 

In analogy, the velocity of P relative to 9 is given by 

U’ = dX’ldT. 



EXPERIMENTS AND SPECIAL RELATIVITY 433 

The link between ui and u’ follows directly from (3.3); the result is 

(3.5) 

Formula (3.5) allows us to express the velocity v’ in terms of the transformation 
(3.3), and vice versa. Precisely, since Vi is the velocity of a generic point at rest in 
&, we obtain v’ by setting U’ = 0 in (3.5); we have 

vi= W/N. (3.6) 

To proceed, note that condition ,4b# = 0 writes explicitly as Sjwj + Win = 0. On 
account of (3.6) and dividing by n > 0 we arrive at the remarkable relation 

+J= --NV’. (3.7) 

With the aid of (3.6) and (3.7), it is possible to cast (3.3) and (3.5) into a suggestive 
form; explicitly, transformation (3.3) becomes 

xi = qxj - &t), (3.8a) 

T= H,x’+ Nt, (3.8b) 

while the addition theorem for velocities (3.5) reads 

For completeness, we observe that conditions (3.2) reduce to 

lim Sj = Sj, lim Hi= 0, lim N= 1. (3.10) 
u’ - 0 1” + 0 0’ - 0 

As the previous analysis shows, (3.8) is the most general linear frame transfor- 
mation endowed with a precise physical meaning. In particular, the simplest 
expression for (3.8), making (3.10) trivially true, is Galilean transformation. On the 
other hand, (3.8a) reveals that the general link between inertial observers (including 
Lorentz transformation) is an anisotropic generalization of Galilean transfor- 
mation, the matrix S accounting for anisotropy. 

4. THE ABSOLUTE OBSERVER 

According to pre-relativistic physics, electromagnetism requires that a dis- 
tinguished inertial observer is to be chosen in which Maxwell equations take their 
usual form. We formalize such a requirement through the 

Principle of optical inertia. There exists an inertial observer-called the absolute 
observer-in which light propagates isotropically with speed c. 
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The crisis of the classical viewpoint arose when experimental devices were set up 
in order to determine the motion of the Earth with respect to the absolute observer. 
The most celebrated experiment-the Michelson-Morley experiment-has 
definitely proved that the classical ideas were to be changed. A possible, and indeed 
fruitful, way to do this is to follow along the line of thought of special relativity. 
Here, instead, we interpret the Michelson-Morley result as the proof that light 
propagates with speed c only when traveling back and forth along any closed path. 
It is our goal to establish the most general form of the frame transformation (3.8) 
embodying the Michelson-Morley result. Explicitly, we take advantage of the prin- 
ciple of optical inertia by characterizing the link between the absolute observer d 
and a generic inertial frame 9, where light propagates with speed c only when 
traveling back and forth along closed circuits. 

The procedure just outlined may suggests that the resulting class of transfor- 
mations between inertial frames is not endowed with a group structure, as physics 
would require. Fortunately, this is not so. To illustrate this point, denote by 9n the 
nth inertial observer and adopt the following notation 

for the frame transformation between d and Fn. Consequently, the transformation 
T,,, from .9$n to 9m is determined by going from 5$ to d and then to FM. In view of 
(4.1), Tn, and its inverse take the form 

while composition satisfies the rule 

Tnrn = Tnr Tr,. 

(4.2) 

Since the identity is an allowable transformation as well as any D,, we conclude 
that frame transformations constructed according to the above procedure do indeed 
form a group. 

5. THE DESCRIPTION OF LIGHT TRIPS 

As a basis for discussing Michelson-Morley experiment, we have to evaluate the 
time it takes a light ray for traveling backward and forward between two points 
marked on a rigid stick. Also, we have to assume that the stick stays at rest in an 
arbitrary inertial frame B and possesses an arbitrary orientation. To reach this goal 
we should know in advance how light propagates relative to 9. This compels us to 
involve the absolute frame d in which the physics of light propagation is com- 
pletely known through the principle of optical inertia. Precisely, light travels 
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isotropically with speed c relative to d, hence the absolute forward and backward 
velocities are given by 

U),) = cf ;, (5.la) 

ufb, = cb’, (5lb) 

fi and b’ being unit vectors. The arbitrariness of the stick orientation amounts to 
choosing the vectorf’ arbitrarily. On the contrary, the vector b’ must be calculated 
by having recourse to the condition that the observer 9 sees light traveling to and 
fro along the same straight path. Mathematically this implies the existence of a 
negative constant LX such that 

Uf,, = aq,, (5.2) 

where Uf,,., and U{,, denote respectively the forward and backward velocity of the 
light ray relative to 9”. 

Whereas U{,, can be easily calculated by using (3.9) and (5.la), determining Ufbj 
requires the knowledge of the constant ~1. It is the present task to evaluate such a 
constant. Let us premise the following 

LEMMA 5.1. The unit vector b’ depends linearly on f i and vi according to the 
formula 

(5.3) 

where v = (v~v~)“~ and the constants $ and cp are given by 

2v(c - vk fk) 
C2+V2-hkfk 

(5.4a) 

v2 - c2 
cp= c2+ v2-bkfk (5.4b) 

Proof In view of (3.4) the matrix S is non-singular, then application of (3.9) 
yields 

on account of (5.2) we find 

cfi-v' ,-bi - vi 
‘cHJk+N=cHkbk+N’ (5.5) 
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Equation (5.5) shows that b’ belongs to the linear span off’ and ui, hence (5.3) is 
trivially true. Further exploitation of (5.5) results from its projections onf’, 6’, and 
vi. We obtain the algebraic system 

a 
c-vkfk cfkbk - vk fk 

cHkfk+N= cHkbk+N ’ 

Cfkbk - Vkbk c-vkbk 
a 

cHkfk + N = cHkbk + N’ 

CfkVk-v2 CbkVk - V= 

‘cHkfk+N=cHkbk+N 

(5.6a) 

(5.6b) 

(5.6~) 

in three unknowns f kbk, vkbk, and CC Of course, the system (5.6) has the trivial 
solution GI = 1 and bk =f k which violates the condition a < 0 and makes (5.5) into 
an identity. The relevant solution is determined by dividing (5.6a) and (5.6b) by 
(5.6~) thus getting rid of a. Straightforward algebra yields 

fkbk = 
v= - c= + 2CVk fk - 2(Ukfk)2 

‘?2+u2-2cvkfk ' 

vkb 

k 
= 2c0= - vkfk(c2 + v=) 

c= + v= - kvkf, ’ 

These results and (5.3) provide the values sought for II/ and cp. It is matter of 
calculation to check that the vector 6’ given by (5.3) and (5.4) is in fact a unit 
vector. 1 

For further reference, we mention here that, as an immediate consequence of 
(5.4), the constants Ic/ and cp satisfy the identity 

$=;(I-& (5.7) 

The theorem provides us with the explicit expression of the constant a. 

THEOREM 5.2. The non-trivial value of the constant a is 

CH,fk+N v= - c= 

a = cHkbk + N C= + V= - 2CVk fk ’ (5.8) 

Proof: Substitution of fkbk into (5.6a) yields soon formula (5.8). [ 

It is worth noticing that, in view of (5.4b), Eq. (5.8) takes a more convenient 
form 

a= 
cHkfk + N 
cHkbk+ NV’ 

(5.9) 
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The particular choice Hi = 0, which includes Galilean transformation too, provides 
the result a = cp. 

Let us comment upon the condition a < 0. It is a peculiarity of (5.8) that con- 
dition v = c represents a threshold in order for light to be reflected back to the 
starting point. Explicitly light reflection occurs when (cHkfk + N)/(cH,bk + N) > 0 
and v < c or, alternatively, when (cHkfk + N)/(cH, bk + N) < 0 and v > c. It should 
come as no surprise that Lorentz and Galilean transformations belong to the first 
case. 

6. THE MICHELSON-MORLEY EXPERIMENT REINTERPRETED 

We are now in a position to formulate, in a fruitful mathematical manner, a rein- 
terpretation of the celebrated Michelson-Morley experiment. As observed by 9, 
consider a light ray which starts from a point P, travels a distance 1 at a velocity 

%P and then, after reflection, gets back to P at a different velocity Uf,,. The lapse 
of time AT between departure and arrival of the light ray is given by 

(6.1) 

The very content of the Michelson-Morley experiment is the proof that AT takes 
exactly the value 21/c regardless of the actual values of forward and backward 
velocities. On this basis, we are led to state the following. 

Postulate of constancy of the light speed along closed rectilinear paths. In every 
inertial frame 9, light travels backward and forward along any rectilinear path of 
arbitrary length 1 in such a way that relation 

1 1 21 
-+- =- 
IU,f,I IU(b,l c 

(6.2) 

is satisfied, independently of the orientation of the path. 
We stress once more that such an assumption is weaker than the usual principle 

of constancy of light speed as introduced by Einstein; moreover, no principle of 
relativity is implied by (6.2). It is worth mentioning that a similar criticism has been 
raised already in the literature-see, e.g. [7]. 

The guiding idea is that of looking at condition (6.2) as a restriction on the frame 
transformation (3.8). Therefore we have to put (6.2) into a more appropriate form. 
For ease in writing, we introduce two convenient temporary shorthands, viz., 

F=cHkfk+ N, B = cHkbk + N. 

On account of (5.2) and (5.9) Eq. (6.2) reads 

,u , =c IFI IqI+ IBI 
If) 

2 IFI Id . (6.3) 
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The quantity 1 Ucf,l can be calculated with the aid of the addition theorem for 
velocities (3.9). On introducing the symmetric matrix C, = Sf S,, squaring (6.3) 
ultimately yields 

(6.4) 

Now we draw a consequence of the condition o! < 0, to be imposed in order that 
light reflects back. In view of (5.8) we find that FBq = B2u whence FBq < 0. 
Therefore we have 

On account of (5.3), (5.7) and recalling the definitions of F and B, we write (6.4) as 

,i?j/r(c"f f f "  -  2cf’vk + vJvk) = -$$ (&vk + N)2. (6.5) 

The quantity $/(vq) follows from (5.4). In conclusion, on adopting the usual 
symbol 

y=(1-v2/cy/2 

and introducing the notation 

p = y2(f&Uk + N), (6.61 

condition (6.4) takes the form 

(c2& - p2vj vk) f’j” - 2C(.&vk - p’v,) f’+ z,k vjvk - p2c2 = 0. (6.7) 

To sum up, Eq. (6.7) is mathematically equivalent to condition (6.2) which guaran- 
tees the constancy of the light speed along closed rectilinear paths. 

LEMMA 6.1. Condition (6.7) holds for every choice of the unit vector f i if and only 
if 

Proof Condition (6.7) involves the unit vector f i, which can be chosen 
arbitrarily; on letting f i be equal to appropriate unit vectors, condition (6.7) splits 
up as 

c*cii - p2vivj + (C,,vV - pV) 6, = 0, 

Cij Vk - j12Vi = 0. 

(6.9a) 

(6.9b) 
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Multiplication of (69a) by uiui provides a relation helpful for subsequent 
calculations, namely, 

Cp’vJ - p2v2 = 0. (6.10) 

Indeed use of (6.10) shows that condition (6.9b) is a consequence of (6.9a) and, 
what is more, makes (6.9a) into the desired result (6.8). This for necessity, 
sufficiency is obvious. 1 

The last step consists in deducing the explicit form of S, from (6.8) and from the 
definition C, = Sf S,. 

THEOREM 6.2. The most general transformation (3.8) between an arbitrary 
inertial observer and the absolute observer, satisfying the postulate of constancy of the 
light speed along closed rectilinear paths, is fully determined by the quantities H, and 
N, the matrix Sj taking on the form 

(6.11) 

Proof: In view of (6.8), we search for a matrix S, in the form 

sp-%y+Evivj, 
Y 

E being the quantity to be determined. Substitution into (6.8) yields the values 

-,+)- P fY- 1 “- __~ 
v2 Y 

which give rise to two different matrices S” ). Now S’-’ has no limit as vi + 0; con- 
dition (3.10) implies that this solution has to be rejected. Thus we are left with the 
matrix SC+) which has the expression (6.1 l), having suppressed the superscript. 1 

An immediate consequence of (6.11) is that the velocities vi and Vi are parallel. 
Indeed, as follows from (3.7), (6.1 I), we have 

p.= -Pvi 
N ’ 

(6.12) 

which represents the sought relationship. 
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7. MATHEMATICAL ANALYSIS OF THE TRANSFORMATION 

To sum up the results obtained so far, on account of (6.11) the transformation 
(3.8), between the absolute observer d and a generic inertial observer F, can be 
written explicitly as 

(7.la) 

T=Hkxk+Nt. (7.lb) 

The physical significance is clear: formulae (7.1) represent the most general trans- 
formation-non-singular at points with finite coordinates and satisfying the 
physical requirements (3Atwhich is consistent with all the following 

(i) principle of mechanical inertia, 

(ii) principle of optical inertia, 

(iii) postulate of constancy of the light speed along closed rectilinear paths; 

also, the transformation (7.1) induces a link between two arbitrary inertial obser- 
vers through the procedure indicated in Section 4, which, in turn, endows the set of 
transformations with a group structure. 

Apart from the velocity ui, relative to the absolute observer &, the transfor- 
mation (7.1) is fully determined by the four quantities H, and N. Here a subtle 
point is to be remarked. Given Hi and N, consider the observer 9 related to d by 
(7.1). Then perform the scale transformation, internal to the observer 4, 

x’ = qjp, T= VT, (7.2) 

and assume that the scale factor q is a function of the relative speed u satisfying 

lim ~(0) = 1. (7.3) 
0-O 

It is readily recognized that the scale transformation (7.2) amounts to making the 
quantities Hi and N into the corresponding quantities Ri and N given by 

i?Ti = qH,, N=tjN. (7.4) 

The new quantities (7.4) satisfy (3.10) and hence they single out a possible frame 
transformation between the same observers d and Ft; in this sense the new trans- 
formation is similar to the original one. Mathematically, we can define an 
equivalence relation within the set of frame transformations (7.1) with every 
equivalence class consisting in those transformations which differ by a scale factor, 
depending on the relative speed v. 

The very problem is to establish what physical requisites are to be imposed so 
as to single out the relevant scale factor. Several motivations suggest that we 
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fix the scale factor by stipulating that the coefficient matrix of (7.1) has unitary 
determinant which, in view of (4.2), makes the determinant of every frame 
transformation unitary between two arbitrary inertial observers. Indeed, Galilean 
transformation has a unitary determinant. Also, this is the only choice that makes 
all determinants equal to each other. In so doing, the absolute frame enters each 
transformation between inertial observers by obeying a request of minimal 
coupling. Finally, whenever a field theory is to build up on the scenario proposed 
above, it is natural to require that the action and the Lagrangian density are both 
invariant. Consequently, the 4-volume element must be invariant, which leads again 
to the requisite of a unitary determinant. 

A definite answer, however, comes from experiments. Specifically, Ives and 
Stilwell [4] showed experimentally that the transverse Doppler effect is described 
by the relationship 

V 
vg =-) 

Y  
(7.5) 

where v. is the frequency of a clock when stationary in the ether, v its frequency 
when in motion. According to our notation, this effect is accounted for through the 
formula 

At=nAT, (7.6) 

which is an immediate consequence of the inverse transformation of (7.1). Incor- 
porating the experimental result (7.5) into our approach is tantamount to requiring 
that 

n = y. (7.7) 

So as to draw the mathematical implication of (7.7), we state the following 
preliminary 

LEMMA 7.1. In full generality, the relation 

1 

n=N+HtVk 

holds true for the transformation (3.8). 

Proof: Note first that condition ni/il= 1 implies 

-h,Skvj+ nN= 1 
J 

while condition ninf = 0 explicitly reads 

hkSF+nHi=O. 

(7.8) 

595/190/2-15 
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Multiplying the last formula by vi and substituting into the previous relation yield 
the sought result. 1 

The mathematical implication of (7.7) is the content of the following 

THEOREM 7.2. The experimental result n = y is mathematically equivalent to the 
condition that the coefficient matrix A of (7.1) has a unitary determinant. 

Proof As a direct calculation shows, the determinant of A is given by 

while (6.6) and (7.8) imply 

Assume first that condition n = y holds. Therefore (7.10) becomes p = y and 
(7.9) implies det n = 1. Suppose now that det n = 1. Use of (7.9) and (7.10) makes 
condition det /i = 1 into the formula 

(7.11) 

As follows from (7.8), Hkvk = l/n-N; substitution into (7.11) and some algebraic 
manipulations provide the equation 

($- I)(?+ l)=O, 

for the unknown n. Since the second factor is positive and n > 0, the only solution is 
n=y. 1 

In accordance with the preceding discussion, we accept the validity of (7.7), 
which in turn allows the transformation (7.1) to be cast into a more expressive 
form. Precisely, the general relation (7.8) and condition (7.7) ultimately give 

xi= s;++uj (xjmu’t), ( V > 

T=f+~,(x*-a’t). (7.12b) 

Two points must be emphasized. As (7.12a) is identical to the spatial part of the 
Lorentz transformation, the usual law of contraction of bodies in motion follows 
also as a consequence of the more general transformation (7.12). Moreover, it is 
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readily recognized that transformation (7.12) is fully determined by knowing the 
three quantities Hi. Two prominent examples on how choosing Hi are presented in 
next section. 

8. Two PARTICULAR CASES 

Our concern is now that of deriving the celebrated Lorentz transformation and 
the Marinov transformation [S] as particular cases of (7.12). Look first at the 
Lorentz transformation. 

According to our view, we are able to arrive at the Lorentz transformation by 
further imposing that light travels, with respect to 9, with a constant speed also 
along open paths. This requisite, which follows as an obvious consequence of the 
Einstein principle of relativity, amounts to the mathematical condition that 

I u, ,.,I = CT (8.1) 

whereby Eq. (6.2) implies that also 1 UCbJ = c. For ease in calculation, we tem- 
porarily adopt the same notations as in (7.1); in the same way we deduced (6.7) 
from (6.2), we can write Eq. (8.1) in the form 

(p2vJvk - c4HjHk) f'j" - 2c(p’vj + c*NH,) f'+ c2(p2 - N2) = 0. (8.2) 

As Eq. (8.2) must hold for every choice of the unit vector f i, we recognize that this 
is true provided that 

p2vivj - c4H, Hi + c2(p2 - N2) 6, = 0, 

p2vi + c2NH, = 0. 

Substitution of (8.3b) into (8.3a) yields 

(8.3a) 

(8.3b) 

(p’-N2) 

whence 

p* = N2. (8.4) 

Since Eq. (7.7) and (7.10) imply p = y, Eq. (8.4) reads N = y. Finally, Eq. (8.3b) fully 
determines Hi in the form 

Hi= -;q. (8.5) 
C 

Thus we have arrived at the usual form of the Lorentz transformation. 
We turn now our attention to the Marinov transformation. According to 
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Marinov’s view, such a transformation both explains the Michelson-Morley 
experiment and allows for absolute simultaneity. Here we have to impose only the 
last request, which is tantamount to setting 

H,=O. (8.7) 

The interesting point of Marinov transformation is the mathematical possibility of 
justifying the Michelson-Morley result on a quasi-classical ground without any 
recourse to Einstein’s principle of relativity. 

As the previous two examples show, the question put by the title of this paper 
has definitely a negative answer. However, mathematical arguments cannot help us 
to make a choice; we leave the question open to the ingenuity of experimental 
researchers. 
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