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1. Introduction 

A local departure from equilibrium conditions usually gives rise to a propagating 
perturbation. The study of such a propagation is an effective tool for examining the 
properties of a given physical system both from a theoretical and experimental point of 
view. Mathematically it is an attractive feature that a great variety of results can be drawn 
without any appeal to a specific model. This is so because the behaviour of the major part 
of physical systems is governed by a set of differential equations which can be cast, 
ultimately, into the general form of a quasilinear hyperbolic system [1, 2, 3]. 

According to the general theory, a central role is played by the characteristic speeds 
c selecting characteristic surfaces across which the normal derivatives of field variables 
may suffer jump discontinuities. The velocity v = en is called wave velocity of the front 
moving with normal speed c in a direction u; of course c may depend on u. The quantity 
8c/Sn is the velocity with which discontinuities propagate along rays (see e.g. [2]). Re- 
markably, in the case of linear homogeneous systems (or in the limit of waves of infinite 
frequency), v is the phase velocity and ~c/On is the group velocity of sinusoidal waves [4]. 
Therefore, "a priori" information on the dependence of c on n would be highly profitable 
so as to gain insights into the structure of the physical system under consideration. 

As an outstanding example, note that v ( -  u) differs from v (u) according to whether 
c ( -  u) coincides with c (n) or not. In particular, the condition that c (n) is homogeneous 
of degree one, as usually assumed in the literature, implies v ( - u )  = v (n); consequently, 
propagation along u occurs in one direction only, being forbidden in the opposite 
direction. 

Since that is not the usual case, the concern of this paper is to deduce rigorously the 
general properties of the function c (n). After a brief resum6 of wave propagation theory, 
the main results are presented in Sect. 3. In particular, Theorem 2 provides the general 
form of the characteristic speeds for first order systems. Second order systems are dealt 
with in Sect. 4. 

2. Preliminaries 

Look at a first order quasilinear hyperbolic system, namely 

u,, + Ak u, k + B = 0 (2.1) 
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where the m-component vector u represents the field variables, depending on time t and 
on n spatial coordinates x = (x 1 . . . .  , x,); the m x m matrices A k (k = 1 , . . . ,  n) and the 
m-component vector B depend on u, x, and t. A comma stands for partial derivative and 
the summation convention is assumed throughout.  Let S be a moving surface of equation 
~b(x, t) = 0; denote by n = Vq~/[Vq~ [ the unit normal to S, and by c = - q~,t/I V4~ I the normal 
speed of propagation. The jumps of the derivatives of u can occur through S provided that 
c satisfies the characteristic condition 

det (n k A k - c l )  = 0 (2.2) 

where I is the m x m identity matrix. Owing to hyperbolicity, Eq. (2.2) admits m real (not 
necessarily distinct) solutions c (~) (c~ = 1 . . . . .  m) for all choices of the unit vector n, while 
the right eigenvectors d (~), satisfying 

(nk A k - c (~) I) d (~) = 0, (2.3) 

constitute a set of m linearly independent vectors. Of course, an analogous property holds 
also for the left eigenvectors l (~). As a result, the jump of the normal derivative of u through 
a singular surface moving with a characteristic speed c (~) is an element of the eigenspace 
belonging to c (~). 

3. General form of the characteristic speeds 

As follows from (2.2), the characteristic speeds c depend on n, besides on u, x, and 
t. Since the aim of this paper is to investigate how c depends on n, it is necessary to 
consider the n components of n as independent variables, thereby removing the request 
that n is an unit vector. F rom now on, n denotes an arbitrary vector and c (n) a solution 
to (2.2), the dependence on u, x, t being understood. According to this view, a character- 
istic speed is called isotropic when c = c (In[). 

A preliminary result, on which is based the subsequent analysis, is provided by the 
following 

L e m m a .  Let c (n) be a solution of (2.2). Then 

~c 
c = - - ' n .  

0n 
(3.1) 

P r o o f  Differentiate (2.3) with respect to nk and multiply the result by n k to obtain 

k --  n k d + ( n p A  p -  c I )  n k -  = O. 
Onk 

Now there always exists a left eigenvector 1 (belonging to c) such that I d 4= 0. Multiplica- 
tion by l cancels out the second term, thus giving 

(nk -4 k) d = ~ -  n (lag. l 

Equation (2.3) implies l (nk A k) d = c (/d); hence simplification by I d provides the sought 
result. [] 

Comparing with the current literature (see e.g. [5]), the peculiar result of this Lemma 
is that formula (3.1) holds true without any appeal to c being homogeneous of degree one 
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in n. Indeed, as it will be shown in the sequel, the homogeneous character of the function 
c (n) is more involved. 

To proceed further, the following general result has to be proved. 

Theorem 1. Let f ( y )  be a non-vanishing real function and p an integer such that 

p f (y) = y . Vf(y) .  (3.2) 

Then f ( y )  may be written as 

f (Y) = f t  (Y) + f2 (Y) if p is odd 
(3.3) 

f (Y) = f t (Y) if p is even 

where, for every real number 2, 

J~ (2 y) = 2 v f l  (Y) (homogeneous property) 

f2 (2 y) = [21 p f2 (Y) (positively homogeneous property) 

Proof. Choose y = 2 v, where v is a fixed unit vector. For  every v introduce the 
function g~(2) - - f (2v ) .  Of course v.  Vf  = dgUd,~; hence Eq. (3.2) implies 

pg~(2) = 2 d g J d 2  

whence 

in ]g~l = p i n  I~,l + k(v). 

On setting h (v) = exp k (v), the previous formula reads 

I f (2v) l  = h(v)121 p. 

Eliminate the moduli by considering all continuous solutions with respect to 2, thus 
obtaining 

f ( 2 v )  = 2Vh(v), f ( 2 v )  = - 2Ph(v), 

f ( 2 v )  = [2[Ph(v), f ( 2 v )  = -]2[Ph(v);  

the function h (v) is now determined by setting 2 = 1. It is then apparent that the first two 
relations give rise to the same condition 

f (2 v) = 2 p f (v), (3.4) 

whereas the remaining ones lead to 

f ( 2  v) = 121Pf(v); (3.5) 

obviously ifp is even Eqs. (3.4) and (3.5) coincide. A simple argument shows that Eqs. (3.4) 
and (3.5) still hold even if v is replaced by y Accordingly, denote by f l ,  f2 any functions 
satisfying (3.4), (3.5), respectively. In conclusion, owing to linearity, the most general 
solution to (3.2) is given by (3.3). [] 

A consequence of Theorem 1, relevant to the problem at hand, can readily be drawn. 
Indeed, as shown by the previous Lemma, the characteristic speed c (n) satisfies Eq. (3.2) 
with p = 1 ; hence 

Corollary. The characteristic speed c (n) may be decomposed as 

c(n) --- c l  ( . )  + c2(n), 

where cl (n) is homogeneous and c2 (n) is positively homogeneous of degree one. 
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It should be pointed out that, unlike c(n), the functions cl and c2 are not solutions 
to (2.2). According to their means, they can be evaluated through the formulas 

C 1 (n) = �89 [e(n)  - -  C ( - -  n)] (3.6) 

c 2 (n) = �89 [c (n) + c (-- n)l. 

The main result is synthesized in the next Theorem 

Theorem 2. The eigenvalues of the matrix nk A k are characterized by their homoge- 
neity properties according to the following scheme 

(i) pairs of elements of the form c +- (n) = c 1 (n) +_ c2(n) 
(ii) single elements of the form c (n) = cl (n) 

(iii) vanishing elements c(n) = O. 

Proof. The statements pertinent to (ii) and (iii) are trivial consequences of the previ- 
ous results. As to statement (i), it is sufficient to show that whenever c + is an eigenvalue 
of n k A k then c - is an eigenvalue too. With this in mind, observe that multiplication of 
(2.3) by - 1 makes the eigenvalue c (n) of n k A k into the eigenvalue - c (n) o f ( -  nk) A k and 
viceversa. Moreover, account of the dependence of c on n implies that c ( -  n) too is an 
eigenvalue of ( -  nk) A k. Hence, if c (n) = c + (n) = c I (n) + c 2 (n) then ( -  nk) A k admits the 
two eigenvalues - c + (n) and c + ( -  n) = - c I (n) + c2 (n), where the homogeneity proper- 
ties of cl, c 2 have been used (in passing note that - e  + (n)~: c + ( - n )  iff c2(n ) + 0). 
Accordingly, the conclusion is that if the matrix nkA k has the eigenvalue c + (n), then 
necessarily it has also the eigenvalue - e + ( -  n) = c -  (n). []  

Observe that whenever c is isotropic, i.e. c = c (In]), then c is trivially positively 
homogeneous. Hence, it follows at once from Theorem 2 that - c is a characteristic speed 
too. 

As an example, look at the hyperbolic quasilinear system considered by Donato  in 
Ref. [6]. Such a system has the form (2.1) with B = 0 and 

( at~ - - a k % + b ~ )  

with k, p, q = 1, 2, 3. As shown in [6] the characteristic speeds are given by ' 

c o = 0 with multiplicity 2, 

2c  -+ = (~ + a).  n ___ {~2 [(e + a). n] 2 -- 4 0 n .  bn} I/2 

It turns out that the speeds c -+ are not homogeneous functions while, according to (3.0, 
the functions 

c~ = ( ~ + a ) . n  
+ e2 = • {~2 [(e + a ) .  n] 2 - -  4 ~  n .  b n }  1/2 " 

are homogeneous and positively homogeneous respectively, in complete agreement with 
Theorem 2. 

4. Second order conservative hyperbolic sys tems  

Theorem 2 furnishes a general result concerning first order quasilinear hyperbolic 
systems. However, in many physical examples the governing equations constitute a 
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second order conservative hyperbolic system 

F'(.;, ,  .,~h) + ~(.,~,, .,~h/= 0. 

As is well known, a suitable choice of the field variables permits the previous system to 
be cast into the form (2.1). Hence, also in this case, the associated wave-front speeds are 
completely characterized by Theorem 2. The particular choice e = fl = 1, has been dealt 
with in Ref. [6]; the form of the characteristic speed is in complete agreement with the 
present results. 

Consider now a special but significant second order system 

0 F~,(u~,t ) + G~(,~,~,) --- 0; (4.1) 

as an example, linear elastic anisotropic solids are described by equations of this type 
[7, 8]. Indeed, (4.1) is a distinguished system because the characteristic speeds are all 
positively homogeneous. To prove this fact, write (4.1) as 

~F ~ ~ ~G~ o 
u,P, + - -  0. ( 4 . 2 )  ~u.,  ~u.~" u.',k = 

Letting [. ] be the jump, applying the compatibility conditions 

[U, tt] = ~13 C2 ; [U~hk] = ~ f l n h n k ,  

where ~ = [n' n q u,P,q], and setting 

(Ao)~ = eF" , aG~ 0u,5; (A")e = ~ nk n", 

the system (4.2) yields 

[c 2 (Ao)3 + (A,);] ~ = 0. 

Non-trivial solutions ~P are allowed provided that the quantity 2 = c z satisfies the 
determinantal equation 

det {2 (Ao)} + (A,)}} = 0. 

In view of hyperbolicity, all 2's are real and non-negative; hence c is of the form 

c =  +_,g~ 
whereby c turns out to be positively homogeneous. 
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Abstract 

The dependence of the characteristic speeds of  quasilinear hyperbolic systems on the propaga- 
tion direction n is investigated. It is proved that any non-vanishing characteristic speed c (n) is the 
sum of a homogeneous function c 1 (n) and a positively homogeneous function c~ (n). As a further 
result, if c 2 (n) is non-vanishing, then both cl (n) + c2 (n) are characteristic speeds. 

Sommario 

Nel lavoro si analizza la dipendenza dalla direzione di propagazione n detle velocit/t caratteri- 
stiche associate ad un sistema iperbolico quasi lineare. Si prova che ogni velocit~ caratteristica c (n) 
non nulla ~ somma di una funzione omogenea c 1 (n) e di una funzione positivamente omegenea 
c 2 (n). Come ulteriore risultato si ha che, se c 2 (n) 6 non nulla, allora entrambe le funzioni 
c 1 (n) + c z (n) sono velocitfi caratteristiche. 
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