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Summary 

A two-step procedure is developed which allows the emergent modes to be determined 
when a discontinuity wave strikes obliquely on a boundary. Although the procedure is 
straightforward, oblique incidence gives rise to a few mathematical problems, which are 
discussed in detail. 

1. Introduct ion 

As it has been recognized since a long time, the mathematical rigour is one 
of the major advantages presented by the theory of discontinuity wave propagation 
[1]. Also, the progressive wave propagation, concerning media governed by 
linear differential equations, is automatically accounted for as a special case 
[2]. Presently much mathematical effort on wave propagation is developed 
within this framework. 

With this in mind, let us mention the prominent topic regarding the inter- 
action of acceleration waves with strong discontinuities (like shocks or boundaries 
separating different media). In the literature this problem has been investigated 
either by linearizing the equations and then considering disturbances of small 
amplitude (see, e.g., [3], [4]) or, in the particular case of normal incidence, by 
looking at nonlinear discontinuity waves of arbitrary amplitude (see, e.g., ['5], [6]). 
Indeed, apart from l~ef. [7], oblique incidence has been analyzed only in the 
case of small perturbations (see, e.g., [8]). The point is that  a wave-front approach 
to oblique incidence exhibits unsuspected drawbacks and pitfalls because of 
several algebraic difficulties which render the analysis really awkward. 

The purpose of this paper is to make these problems mathematically precise 
and to develop a firm basis for future investigations. Thus we set aside the more 
complicated oblique incidence of waves with shocks by considering as a strong 
discontinuity a boundary between two different media. In the sequel we restrict 
ourselves only to plane waves impinging on a plane boundary. 
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In Sect. 2 we determine admissible emergent modes through a geometric- 
kinematic procedure leading eventually to Snell's law. In order for the amplitudes 
of these emergent modes to be calculated, we need a relationship among all the 
discontinuities of a quanti ty Q across every wave front, including the boundary 
(Sect. 3). The final formula resembles Brun's [5], although it is necessary a 
different interpretation. On the basis of this result, Sect. 4 is devoted to the 
actual calculation of the amplitudes of the emergent modes in terms of the 
amplitude of the incident wave. Two cases are examined concerning reflection 
and refraction or reflection only. Conclusions and comments are presented in 

Sect. 5. 

2. Determinat ion of the Emergent Modes 

To make the reflection and refraction pat tern unique we must appeal to 
the requirement of causality [9]. Therefore, we take the incident wave t o  be 
the cause whose effect is the generation of the emergent waves; in other words, 
the emergent waves must propagate away from the boundary. Mathematically, 
we make this point operative by choosing the unit normal n to each wave fl'ont 
to be directed toward the boundary; accordingly, the incident wave travels 
with a positive characteristic speed cinc, whereas the characteristic speed % 
of the p-th emergent wave is negative. I t  is worth noting that  if we look at a 
boundary as a zero-speed strong-discontinuity wave then such a convention 
formally agrees with the Lax conditions for an evolutionary shock [6], [10]. 

We determine the emergent modes by a geometric and kinematic analysis 
about the interaction. Consider the straight line r drawn on the boundary by 
the incident wave. Of course, the emergent waves must intersect the boundary 
along the same line r. Definite consequences are obtained by  introducing a 
coordinate system (x, y, z) whereby the boundary is described by the equation 

z = 0 while the unit normal to the incident wave front is nine = (#inc, 0, ffinc), 
with #i~c, alnc > 0. Then, the incident wave front is given by #inox + alnCz 
- - v i n c t  = 0 and the line r is represented as x = v inc t / r  Analogously, the 
possible p-th outgoing wave front t t v X - t - % z -  % t  = 0 gives rise to the line 
x ~ c v t / t t  p on the boundary. The requirement that  the two lines coincide leads 
us to the conclusion 

cinr __ c v (2.1) 

which, owing to its form, will be referred to as Snell's law. 
Evidently, Snell's law allows all the emergent modes to be determined. 

Indeed, the causality requirement on the outgoing waves provides the signs 
of the ~p's whose moduli are given by the obvious formula 

lay[ ----- Vl --/~v 2. 
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Hence, the characteristic speeds cp depend on n~ through/zp only. Coherently, 
a characteristic speed % selects an admissible emergent mode if Snell's law, 
regarded as an equation for/~p, possesses a solution at least. In this case, the 
emergent mode travels with speed cp in the direction determined by/;p. 

3 .  J u m p  C o n d i t i o n s  o n  a B o u n d a r y  

Let Q be a quantity, relevant to the body at hand, suffering a strong dis- 
continuity across the boundary in accordance with the generalized Rankine- 
Hugoniot conditions [6]. In order to find the amplitudes of the emergent modes, 
we have now to relate all jumps of Q across every wave front with the strong 
discontinuity of Q across the boundary. 

Note first that the line r divides the boundary into two regions b and a, 
behind and ahead the incident wave front respectively. In agreement with stan- 
dard notations, denote by Qp+ and Qp- the (limit) values of Q ahead and behind 
the p-th wave front; the corresponding jump is defined by [Q]~ : Qp- - Qp+. 
As to the strong discontinuity, consider as region behind the boundary that 
containing the incident wave and, accordingly, denote by [Q]]b, [[Q]~ the strong 
discontinuity across the region b and a, respectively. We lose no generality by 
restricting ourselves to the plane y-~ 0. There, all the wave fronts and the 
boundary are represented by straight lines intersecting at a point P. T]~e situation 
is fully depicted in Fig. 1. 

So as to find the relationship among the various jumps, consider a circle 
of radius R centered at P and let all the quantities be calculated on the circle 
itself. Then, the identity 

~Q-~b - -  [Q~]a - -  [Q]p -]- [Q]q - [Q]inc -~  (Qq+ - Q~+) -{- (Qb + - -  Q q - )  

- -  - -  - -  Qinc) --~ 0 -{- (Q~- Qb-) § (Q~n~ Qp+) -k (Q~- + 

- + 

an 

b P + a ^ 

z n c  

Fig.  ] 
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holds. Taking the limit as R goes to zero the differences enclosed between paren- 
theses go to zero as well. So we are left with the formula 

~Q~b - [Q~o = [O]~ - [O]~ + [O]~n~. 

Obviously, if there are M + refracted modes and M-  reflected modes, we have 

[[OT]b --  ]'Q]a = ~ [Q]~ - Z [QJq q- [Q]i.c. (3.1) 
M -  M + 

In passing we note that  a similar formula holds also in the case of normal incidence 
of shocks and waves [5], [11], although there time limits are involved rather 
than spatial limits. 

4. Amplitudes of the Emergent  Modes 

Consider first the case when the boundary separates two different media 
so that  reflected and refracted waves may exist. Denote the field variables, 
describing the bebaviour of each medium, by U, • ~ = 1, 2, ..., where the 
superscripts :~ distinguish between the two media. Finally, suppose that  U~ • 
are the solutions of the following systems of quasilinear hyperbolic differential 
equations in conservative form 

~U~ • 
O---/-- + V. F,• • = / , • 1 7 7  (4.1) 

Since the boundary acts as a strong discontinuity for the field variables, 
U~ + and U,-  are connected by the generahzed Rankine-Hugoniot relations, 
which in the present case read 

F o + ( u ; )  �9 N - F : - ( U ; ) .  N = 0,  (4.2) 

where N is the unit normal to the boundary satisfying the condition N .  nine > 0. 
In order to apply Eq. (3.1), we have to derive Eq. (4.2) with respect to t thus 
obtaining 

OF~ + 3F.- 
- - . N - - - - . N = O  

at ~t 

which can be re-written as 

Ii-g/-.N  = o. 

A straightforward apphcation of (3.1) gives 

[~F~- _ I~F.+ lOFt- 
= o .  (4.3) 
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Now the kinematic condition of compatibil i ty relative to a wave front moving 

with speed c in the direction n reads 

[0 q 
--~i'] -c[(n. ~) F.], 

whence 

[ 0 F ~ ] .  N = - - c [ ( n  �9 ~') 8 o 1 .  N .  (4 .4)  
at J 

A more convenient from of (4.4) is obtained as follows. Let  i ,] ,  k = 1, 2, 3 and 
adopt  the summation convention on repeated indices. Owing to the dependence 

of F~ on Us, we have 

OF~i 

As usual, we set ~ ---- (Ai),~; hence 

[Fo, , j ]  = (A~)o~ [U~. j ] .  

Maxwell's condition implies that  

As the theory of wave propagation shows [6], [12], denoting by  d~ a right eigen- 
vector of (Ai),~ (belonging to the eigenvalue c), we can write 

[n~U~.~] = Fd~ 

for a suitable amplitude/~.  Collecting the previous results, we obtain 

[F~i,i] -~ F(Ai)~z d~ni. 

Therefore Eq. (4.4) becomes 

~t J 
w h e r e  h~ = N~(AI).~ alp. 

In  conclusion, Eq. (4.3) can be cast into the final form 

S (cFh~-)~ -- ~ (crh~+)q + (cf'h~-)i.o = 0 .  (4.5) 
M -  M + 

After the determination of the emergent modes via Snell's law (2.1), formula 
(4.5) allows the ampli tudes/ 'p ,  Fq (p -~ 1 . . . . .  M- ,  q = 1 . . . . .  M +) to be evaluated 

algebraically once the amplitude/~inc is given. 
Consider now the special case when a medium is joined with another medium 

which does not t ransmit  mechanical waves; as an example note tha t  refraction 
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of the elastic waves at an interface of a solid elastic body with air does not occur 
(or better can be neglected for practical purposes). In  this instance, namely 
when there exists a free surface, the system of waves consists of incident and 
reflected waves only which can be determined in the following way. 

First of all, Snell's law determines the reflected modes. As to their amplitudes, 
we must appeal to the boundary conditions imposed on the free surface. Let  
such conditions be of the form 

]~A(U,) ---- 0, (4.6) 

where the range of A is a subset of the range of a. As the system (4.6) holds 
identically in time, differentiating with respect to t yields 

whence 

The validity of the relation 
B~.~[U~.t]  = o .  

and Eq. (3.1) permit Eq. (4.7) to be written as 

(4.7) 

B,4,.{M~ (cY'd~-)p + (cJT'd.-)i~}-=O. (4.8) 

I t  is apparent that  Eq. (4.8) is less restrictive than Eq. (4.5), in complete agreement 
with the fact that  only the reflected modes are to be determined. 

5. Comments 

The problem of finding the emergent modes arising from the oblique incidence 
of an acceleration wave on a strong discontinuity has been solved in two steps. 
The first one consists in employing Snell's law for determining both the speed 
and the propagation direction of the admissible emergent modes. In  the second 
step, the amplitudes of the emergent modes are calculated as solutions of the 
algebraic system (4.5) --  or, when only the reflection is involved, of the system 

(4.8). 
The procedure just described looks straightforward. Unfortunately a few 

drawbacks are present at a theoretical level. On the one hand, the lack of in- 
formation on the general dependence of c on n (see, however, [13]) does not allow 
the number of emergent modes to be determined a priori through Snell's law 
(2.1). On the other, it is a formidable task to evaluate the rank of the algebraic 
system (4.5). Ultimately, this reflects the difficulty of establishing whether 
or not the vectors h~ • are linearly independent. Precisely, because of their 
definition, the number of linearly independent h~'s is not greater than the rank 
of the matrix Ni(Ai),~; this fact may render the system (4.5) underdetermined. 
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Whereas  such an  unp leasan t  f ea tu re  canno t  occur  for  n o r m a l  incidence,  

i t  is a crucial  p rob lem for obl ique incidence.  W e  bel ieve t h a t  th is  top ic  deserves  

fu r the r  ana lys i s  wi th  a view to deduce  a sor t  of L a x  condi t ions  for obl ique inci-  

dence.  This  s t u d y  is unde rway .  
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