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Abstract—The inverse problem of the calculus of variations is investigated in conjunction with
two non-linear models of inelastic solids, namely those of Kelvin-Voigt and of Zener. In both
cases, on appealing to the general theory, the most general forms of the constitutive equations
compatible with the existence of a variational formulation are determined. Next the pertinent
(local-in-time) Lagrangian densities are established. The main features of the constitutive equations
and the Lagrangian densitics so obtained arc also discussed.

1. INTRODUCTION

During the last two decades much research has been performed on variational approaches
in continuum mechanics[1], this being motivated by theoretical and practical advantages
of variational principles against local physical laws. Some of these advantages follow. First,
variational formulations of the laws of continuum mechanics may be the only rigorous
way to express such laws; this is so because the fundamental principles of continuum
mechanics are global in character while local forms of the laws are generated from them
only if the involved fields are endowed with suitable smoothness properties. Second, a
single functional accounts for all of the intrinsic features of the problem at hand: differential
equations; boundary and jump conditions. Third, variational formulations may serve to
unify diverse fields and constitute natural means for approximating or finding the
solution[2]. Fourth, the variational approach allows a systematic connection between
invariance properties and conservation laws[3]. That is why lately particular attention has
been addressed to the inverse problem, namely the problem of finding a variational
principle corresponding to a given system of differential equations.

In principle, the inverse problem may be answered by appealing to a theorem due to
Volterra[4], and revisited by Vainberg[5], which provides a necessary and sufficient
condition for an operator to be the derivative of a functional (to be potential). However,
so as to make this theorem operative we have to choose a Banach space, in which the
operator acts, and a pairing. If, for example, we look at the Banach (and Hilbert) space
L, and define the pairing as the usual inner product then the functional is characterized
by a Lagrangian (density) in the ordinary sense, namely a local-in-time Lagrangian. In
such a case systems of non-linear differential equations have been investigated extensively
and explicit conditions, ensuring the existence of a variational formulation, have been
delivered together with outstanding applications[6-8]. Further variational principles may
be achieved by looking at different pairings; in particular, the convolution pairing
proved to be very fruitful in several contexts such as, for example, heat conduction[9],
viscoelasticity[ 10, 11], and thermoelasticity[12]. Of course, variational principles involving
the convolution pairing are characterized by non-local Lagrangians.

It is often claimed that the existence of variational principles with local-in-time
Lagrangians is peculiar to conservative systems. While it is usually so, there seems not to
be a general argument ruling out the possibility of variational formulations for dissipative
systems. Indeed, it is the aim of this paper to show that some materials which are usually
viewed as dissipative bodies, may be cast into a variational framework. Specifically, we
look first at Kelvin—Voigt-like materials characterized by the stress tensor being expressed
through a non-linear function of the deformation gradient and of the velocity gradient
(and also of the space and time variables). Next we examine Zener-like materials[13],
namely materials characterized by the time rate of stress tensor being a non-linear function

1357



1358 F. Bampi AND A. MORRO

of the stress tensor itself, of the deformation gradient, and of the velocity gradient. Although
the Kelvin-Voigt model might be viewed as a special case, from a variational viewpoint
noticeable conceptual aspects make the two problems markedly different; that is why the
two models are investigated separately. In both cases we require that the balance equations
and the constitutive equations arc compatible with the existence of a variational formulation.
So we are able to derive significant restrictions on the constitutive functions. For these
restricted functions, along with the balance equations, we determine explicitly the
corresponding Lagrangian.

If objectivity is accepted as a principle[ 14] then further restrictions on the constitutive
equations are likely to arise; however, for the sake of gencerality, we disregard objectivity
requirements.

2. POTENTIALNESS CONDITIONS AND LAGRANGIANS

Upon labeling the particles of the body under consideration by the positions they
occupy in a suitable reference configuration we describe the finite motion of the body
through the smooth function x = x(X, ) determining the position x of the particle X at
time t. So x =x, = dx(X,#)/0t is the velocity and F = 2x(X,t)/6X is the deformation
gradient; we assume that J = detF #£0. Owing to the conservation of mass, the mass
density p is determined through the motion by

p=J""pe(X)

where p, is the reference mass density. In view of this relation it is convenient to account
for the stress through the first Piola-Kirchhoff stress tensor S; then the motion is governed
by

poX = DivS + pgb (1)

where b = b(X, t) is the body force and Div is the material divergence operator. As we are
not interested in the thermal aspects of the problem we disregard the temperature field as
well as the energy balance equation.

Within such a framework the inverse problem of the calculus of variations consists
in ascertaining whether, and how, possible constitutive functions for the stress tensor S
allow the balance eqn (1) to arise from a variational principle. To accomplish this in a
systematic way we appeal to the general theory[4,5,8]. Now, adopt the summation
convention and let a comma followed by a Greek letter, « say, denote partial differentiation
with respect to suitable variables y,, a = 1, 2,...,n. According to Ref. [8] a third-order
system of the form

fr(“m uﬂ.a?uﬂ.aﬁ)uﬂ.aﬂv) = 09 F)Q = 1’23---;"3; &, ﬂv? = 1,2,...,". (2}

in the unknown functions ug = ug(y,), admits a variational formulation if and only if the
potentialness conditions
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are satisfied. Moreover, if conditions (3)—(6) hold then system (2) admits a variational
formulation corresponding to the Lagrangian density

1

L(“r) = (uﬂ - aﬂ) f fn(ar,ar.m ar.aﬂ9 al‘.aﬂy) dé (7)

0

where i, is a fixed function and fg = dg + &(ug — dg), £€[0, 1]

Henceforth we use Cartesian tensor notation, the convention that capital indices refer
to material coordinates and lower case indices to present coordinates, and the convention
that round (square) brackets, enclosing a pair of capital—or lower case—indices, denote
symmetrization (skew-symmetrization). Latin indices are allowed to run over 1, 2, 3. Since
we aim to apply conditions (3)—(6) to the balance eqn (1) we let a, B, y=1, 2, 3, 4
specifically, the independent variables are taken to be y, = X, ¥4 = t. The choice of the
unknown functions uy is strictly related to the variational problem under consideration
and then it will be made in connection with the specific models for the dissipative body.

3. NON-LINEAR KELVIN-VOIGT MATERIALS

If we allow also for an explicit dependence on X and ¢, the non-linear version of the
Kelvin—Voigt model is expressed by the response function

= S(F,F,X,1). (8)

Before substituting into the balance eqn (1) and investigating the restrictions placed by
conditions (3)-(6), we observe that some care must be exercised when dealing with
derivatives involving symmetric quantities; this feature is relevant here because of the
dependence of S on F. For example, from g = g(x, ) it follows that

dg=ﬂg__dx

og og g
axp'lﬂ paf = axp' dx,, MQ -+ 2 a dx,, Ql ax dxp‘,,

Xp.0r Pt

the factor 2 reflecting the symmetry property x, o, = X, 0. Accordingly, in connection with
eqn (8) we may write

dSM-Za&“d,m . )

Ox Xp.Qi

the dots representing terms concerning the other independent variables. Hence we get

OS;m
Sim.r = zax,,,q, Xport -
whence
- aS,'(M
S,-M‘M = 2axp'q)‘ xp_QM, + cee
Then balance eqn (1) explicitly reads
as oS oS
= Xy g, — M it —— =0.
El += PoXiu 5-",.0) xp.Q 26 O p.QMr axu Pobt (10)

To ascertain whether eqn (10) may admit a variational formulation we have first to
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choose the unknown functions: letting I', Q = 1, 2, 3 we set y; = x;. We observe preliminarly
that the term pgx,, does not enter at all the subsequent analysis merely because it gives
rise to identities only. Now, as a first step we derive some restrictions placed by conditions
(3) and (4). In view of eqn (10) we have

OE, 2 0Suy

CXp.omM: 30%,.0n

(11)

the factor 3 being due to the fact that x, gp, = X,.0im = Xp.ou Whence

dE; = ﬂ"—dx,,,,,,. +...=3

E;
—-————dx,,.QM, + .
axn-aﬂv

0X . oM

For ease in calculations it is convenient to make use of the identity

OE; 0 ( OSim )
ST e —— S‘ . = - . (12
0% .01 6x,_Q,( M) 0% .01/ M )

In view of egns (11) and (12) we find that

OE, 3( O, > _ < 3Sig )
0x,.0, 0y oMt/ OXp.p1/ M

Accordingly, conditions (3) and (4) imply that

0Sum , OSpm

i L SR M (13)
Oxp0n 0%y
3Sin asgg> B

(axp,Q! * OX;i mi)m =0 (14)

Hence we write

OSim 55,,2 _
0Xp o * OX; My = Kipme (1)

where Ko = K ign is a divergence-free tensor function of X and . A comparison of eqn
(15) with eqn (13) shows that K;,uq, = 0. Thus we get

Kipmo = Kiipymo

and

Kiipymorm = 0.

As a consequence it follows that there exists a tensor function ¥;, = ¥;;; of X, ¢ such that

Kiomg = SMQR\yip.R'

Integration of eqn (15) allows us to find the dependence of S on F. To this purpose we
observe that the homogeneous counterpart of eqn (15) may be given the form of a Killing
equation (see §84 in Ref. [14]), namely
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merely by letting the indices u and v stand for the pairs iM and pQ, respectively. Then the
general solution to eqn (15) is

Sim = Sim + AimpoXp.00 + EmorYip.rXp.01 {i6)

where s,y and A;ypp = — A iy are functions of F, X, and ¢.
We continue the analysis by exploiting condition (4), in the case a, f = 1, 2, 3, and
condition (5). This is made simpler by having recourse to the identity

OE, _ _ 0 o _(as,,,)
6xp'Q— 0x,.9 MM 0x,.0/m

and by observing that the right-hand sides of conditions (4) and (5) may be given the form
JE; ( OE; ) a5, a8, OE; OE
i __3 i = — I(M+2( I(M)_ l+2( l)
0xp.0m 0Xp oMt/ 0x,,0) Oxpqu/a  OXpo 0% p.0m/M

JE; oE; 0S; oS,
R e W e G I B
axp.Qt 1 0% p. oM/ Mt 0X, M axp,Ml M

As a consequence we see at once that conditions (4) and (5) yield

OSum _ OSpm + 2(682(_;“) =0 17
6xp'm 6x,-,Q, axi.Q)l )

3Su _ 35, (asgg> -

0x,0 OX;ym +2 0X; M1/ = Hipuo o

where Hi,ug (Himo.m = 0) is an arbitrary function of X, ¢; the immediate comparison
between eqns (17) and (18) shows that

Hipmg = Hipima-

Since, owing to eqn (16), the dependence of S on F is known, the integration of eqn (18)
allows us to determine the dependence of S on F. Because of eqn (9) we have

2_‘3_‘.S_LQ_=A

im + Eomrrir
ax“m pOIM QMR * pi,R

Therefore substitution of eqn (16) into eqn (18) gives

(0Auer _ 9Apgre 5qum)x + D _ 59 | OApin
t

+ eporVipre = H
5xp.q ax,"“ ax,‘k rRe axp'a axi'u a MQR T ip.Rt ipMQ

(19)
where the operator 8/0t denotes the derivative with respect to the explicit dependence on
t. On interchanging the pairs iM, pQ and adding the resulting equation to eqn (19) we find
that

SAS 22:11-N
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emorYip.re = Hiipypmoy

whence it follows that
Hiipymarn = 0
holds identically. Then, since H;yg.n = 0, a subtraction yiclds
Hipymoiu = 0.
Accordingly there exists a symmetric tensor @;, = @, of X, ¢ such that
Hipmer = emorPip. x5
the function H;,uq is thus completely expressed in terms of ¥, and @;,, namely
Himo = Hipimgy = emor@ip.r + Wip.r0):

Upon substituting this expression into eqn (19) we observe that eqn (19) itself holds
identically if and only if

0Aim,r + 0A,rpg + 0Apgim =0 (20)
ax,'Q axi.M axr.R

Osim _ O5p9 _ OAimpg _

0x,o Oxipy O emorPip.x- 21

The general solution to eqn (20) is

A Ay
Aimpe = 0x,0 O0Xiy

where A, is a function of F, X, 1. Consequently eqn (21) becomes

3 M) 0 aAEQ> _
ax,_Q<s‘“ a:) ax,.,M<S"Q o ) = uer®ir

Thus there exists a scalar function £ of F, X, t such that

B oAy |
SiMm = m _atA{‘ + ieMQR(Dl'P-RxP.Q'

In conclusion, we have the expression

0= 0A 0 1
Su=5—+ANmi— Xp.00 + 5emorPip.r%p.0 + eMorYip R %501 (22)
6x,-'M 6x;_M 2

It remains now to investigate the restrictions placed by condition (6); upon a straightforward
calculation we find that function (22) satisfies identically condition (6).

In summary, the balance eqn (1), with stress S as given by function (22), admits a
variational formulation; indeed, function (22) is the most general constitutive relation
compatible with a variational formulation. Additional restrictions on the constitutive
equation for S may arise because of symmetry requirements. Since S is the (first) Piola-
Kirchhoff stress tensor, in the case of non-polar materials the symmetry property
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SimXim = SiMXim
must be true. Now, to find the necessary (and sufficient) conditions for this property to

hold is a formidable task. It is an easy matter, however, (o exhibit an example of a sufficient
condition. Let ®;, =0, ¥;, = 0 and

U]
n

(C)

Ay = X Auy trC

where C = FTF, tr denotes the trace, and Ayy = Ayu(X, 1) is any tensor but the identity.
Thus function (22) takes the form

o=

Sim= P + 2 ApmXp MXi8Xp.0t — 2 ApgXiMXppXp0n + AnpXintr C
LM

satisfying the required symmetry property.

On appealing to expression (7) for the Lagrangian density corresponding to system
(2), we move on to determine the Lagrangian density for Kelvin-Voigt materials in the
general case, function (22). To simplify the calculations, and without any loss of generality,
we put i; = £{(X). Then, letting X = & + &{x — &), expression (7) becomes

1 ! .
L(x) = ipo(x:‘ = X)X =~ polx; — X;)b; — J (xi = X)Sim. m(X)d¢
0

where the dependence on X, ¢ is understood. In view of function (22) the divergence of S

turns out to be
o= oA
) = | . — [ =ee
Sist. (axi.M).M + Aintoa (5"«'.M xp'Q').M.

Because

0= =
'é;:;(x: — X = 7

oA oA

PQx 2y = PR

5X.-_M (xx Jex).M 65
(X — R = Qf““‘g

¢

integrations by parts vield

1 L s 1.
S,' . X ;"2 d =—J‘ “:d —J. —— A,' ’,,- i d
J Ml X)x ALl A FY: ¢ A 66[ m.AX)x; 5] d&

0

1 H
A, Ay .
+ j; FY: x; md& + .[) 3 Xpdé + bt

the symbol b.t. denotes divergences and time derivatives which result in inessential
boundary terms inasmuch as we perform the integration over the space—time variables
with the purpose of determining the action of the system. To within a time derivative, the
third and fourth integrals appearing on the right-hand side are the opposite of each other.
So up to a sign, we obtain the Lagrangian density in the form
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I
L(x) = ipo)'(')'( ~ Z(F) + A(F) F + pox-b (23)

where A F = ApX; ppr.

Some remarks are in order about the structure, eqn (23), of L(x). First, the functions
¥, @, do not enter the Lagrangian density and the balance equation because they give
rise to divergence-free contributions to S. Second, the function Z plays the role of a
potential energy. This feature should come as no surprise although usually, in continuum
mechanics, the prescription L = T — V only works for conservative particle-like systems.
Indeed this occurs just because the use of Lagrangian coordinates preserves the similarity
with a system of discrete particles. Third, roughly speaking the stress enters the Lagrangian
density, eqn (23), as a body force; specifically, to within a time derivative and a divergence,
pob-x + A-F becomes (pob + Div A)-x. However, this view must not be overestimated
because, as we have seen, the term (0A ,g/0x; p)x,.o as well contributes to the body force
and to the Lagrangian density.

4. NON-LINEAR ZENER SOLIDS

A non-linear Zener solid is characterized by the differential constitutive equation
5 =868,F,F,X, 1) (24)

which governs the evolution of stress S; in eqn (24) 7 is a parameter with the dimension
of time. The presence of § makes the variational problem qualitatively different from that
of the previous section. Indeed, unlike the Kelvin-Voigt materials, here we have to deal
with a differential constitutive equation—or, alternatively, a functional—; the impossibility
of a direct substitution of eqn (24) into eqn (1) compels us to regard stress S as an additional
unknown field whose behaviour is determined by eqn (24) which thereby plays the role of
the balance equation for S. This view, arising naturally in the variational context,
corroborates recent approaches to non-statiopary thermodynamics based on kinetic
theory[16]. Unfortunately, as a direct application of condition (5) to eqn (24}, shows the
fact that the highest order derivative, S, is an odd-order one rules out the possibility of a
variational formulation for the system (1), (24). A remedy to this shortcoming consists in
the introduction of an auxiliary tensor function L, defined through the relation

L=§
and in looking at X as an unknown field in place of S. Thus, on introducing the parameter

u simply for dimensional convenience, the full system takes the form

mi:= wpoX;u — Zipes — Pob) =0,
KiM = ‘tE;M,,, - sm(ng.,, x,,‘q, X’_Q,, XQ, t) = (, (25)

So as to apply conditions (3)-(6) to system (25) we choose as unknown functions ur
the fields x;, X, Look first at conditions (5) and {6) in connection with eqn (25),. Since

0K _ 051y
asz-t - asz.r

condition (5) yields
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S, 3Bpg _
3%,0. " Mo,

while condition (6) becomes

Sim )
(aZpQ.: ] =0

1365

(26)

27

Observe that eqn (26) may be viewed as a Killing equation; then, on account of eqn (27),

the general solution to eqn (26) is
Sim=0om + BimpoZpo.

where Oim = aiM(F’ F, x, t) and Bl'MpQ = ——BPQ‘M = BiMPQ(F’ F, X).

(28)

Further restrictions on o,y and B;y, follow from the application of conditions (4)-

(6) to system (25). To this end observe that

Ky _ _ i omy _ _Es 5.,
0%p,01 0xp.0 OZim. o 2wMe

then, in view of eqn (28), condition (4) reduces to

00y +aBiMrRZ
0xpgr  0Xp

rRt = %5”‘51\«0

which holds identically if and only if

aBiMrR —
0% .01 =0
60',~M _ E
axp'Q! = 26,’,,5“0.

As a consequence we find that

Bimpg = Binpo(F,X), Oim = WX p + Oiy(F, X, 0)

On account of system (25) condition (5) reads

S
5x,_Q

then, owing to eqns (28) and (29), it turns out that

By g Ow_yg
6x,‘x axp‘Q

In conclusion we arrive at the expression

Sim = BinpolX)Z 0o, + UXime + On(X,t)

(29)

(30)

which gives the most general function $ making conditions (3)-(6) identically verified;

therefore the balance eqn (25); and the constitutive eqn (25);, which now reads
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Sin = BinpoX)Z 0. + 1Xipe + Oupd X, 1) (31)

admit a variational formulation.

We are now in a position to evaluate explicitly the Lagrangian density corresponding
to system (25) and condition (30). In this regard, no generality is lost by choosing the fixed
functions & and £ as functions of X only. Then, on letting

x=t+¢&x—-28), E£=f+¢cz-2

eqn (7) becomes

1

Lx,X) = ‘[ [md%, EXx; — %) + K%, EXZipr — Zipp)] dE.

0

A straightforward calculation leads to the result
L(x,L) = %po)'(')'( + %t!‘.-i + uF-£ +Z-(BL)+ pob-x + ©-L (32)

where £(BL) = Z,yBirnpoZpo.-

In ending this section we make a remark on the constitutive eqn (31). The stability
properties of eqn (31), which may be viewed as an evolution equation, are mainly due to
tensor B[ 17, 18]. Since By, = — Bpgin, at least one eigenvalue of B is zero and then the
asymptotic stability is not ensured. Specifically, multiplication of eqn (31) by §;,, and
integration yield, for each particle X

3
5%*4) — S¥0) = 2‘[ SisltF iy + Opy)dt

(]

where §2 = §;,,S:s- Thus the vanishing of F and © outside a finite interval does not imply
that S{(4) - 0 as 1 goes to infinity.

5. COMMENTS

In this paper we have concentrated attention on two non-linear models of inelastic
continua, namely those of Kelvin-Voigt and Zener. At first sight it seems that the Zener
model embraces the Kelvin—Voigt model as a particular case which corresponds to setting
1 = 0 whence S = S(F, F, X, 1). However, from a variational standpoint it is not so. Indeed,
Sections 3 and 4 show how different the two cases are and how the analysis of the Kelvin-
Voigt model is much more complicated. In fact, the Kelvin-Voigt model is described by
a third-order differential equation in the unknown function x. The Zener model, instead,
ultimately results in a second-order system of differential equations for two unknown
functions, namely x and L.

It is of interest to observe that a preliminary investigation of the Kelvin-Voigt model
has been performed in connection with the simplifying assumption that A be independent
of F[19]. If this assumption holds we have A,y = $A4:y,0X, o Where A;y,o = Apgin
is a function of X, t. As we should expect, a trivial calculation shows that
Aim. — (OA,g/0x; )X, 0, reduces to the corresponding term, $A4ipp0.%Xp.0 + AimpoXp.0rs
exhibited in Ref. [19].

As a consequence of the analysis so developed, the most general constitutive equation
compatible with the existence of a variational formulation is given by function (22) or eqn
(31) depending on whether we regard x or x and £ as unknown functions. Concerning
function (22), since S is given in terms of four potential functions E, A, ®, ¥, the model is
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likely to be effective in many circumstances. Equation (31), instcad, sccms not to be
applicable to a large extent just because of the skew-symmetry of B. As a consequence
Biypo cannot reduce to the identity tensor 8,0y Which corresponds to the Maxwell
model. Thus in the one-dimensional case B vanishes and then the dissipative character of
eqn (31) is ruled out.

In conclusion, we have derived the restrictions on the non-lincar Kelvin-Voigt and
Zener models ensuring the existence of a variational formulation. These restrictions are
rather severe in the case of the Zener model; in particular the Maxwell model cannot admit
a variational formulation. Of course these severe restrictions are closely related to the
Lagrangian being local-in-time. The literature (see, e.g. Ref. [11]) gives evidence of many
possibilities of variational formulations based on convolution functionals (non-local
Lagrangians); it is our intention to re-examine models of dissipative materials and to derive
the conditions allowing them to arise from non-local Lagrangians. In this connection,
looking at the inverse problem in the extended sense[20] could be highly profitable.
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