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SOMMARIO. Si sviluppa un'analisi non lineare della stabili- 

td per il problema di BOnard relativo ad un fluido ehimica- 

mente reagente e riscaldato dall'alto; i risultati sono eonfron- 

tati con quelli trovati in precedenza da Wollkind & Frisch: 

Successivamente si elabora un'analisi non lineare della sta- 

bilitd proprio per il modello di Wollkind & Frisch e si mostra 

che si possono presentare delle instabilitd. 

SUMMAR Y. A nonlinear stability analysis is described for  

the Bknard problem for  a chemically reacting fluid heated 

from above; the findings are compared with those o f  Wollkind 

& Frisch, Nex t  an energy stability analysis is given for  the 

model o f  Wollkind & Frisch and it is shown that instabilities 

may occur. 

1. INTRODUCTION 

In a paper which appeared in 1971 Wollkind and Frisch 

[1] developed a linear analysis for a chemical instability 

problem and deduced that for large enough Rayleigh number 

the B6nard problem involving a chemically dissociating 

fluid is unstable, in the situation which is stable for the 

non-reactive fluid, when the fluid layer is heated from 
above. In addition Wollkind and Frisch gave a plausible 
physical explanation for the instability result. Although 

strong instabilities are often present in chemical systems 
[2], one might suspect that the instability result of  Wollkind 

and Frisch is a direct consequence of  their linear approxi- 

mation but not of  the properties o f  the fluid. 

To eliminate this doubt in this paper we develop a non- 

linear analysis of the problem investigated in [1]. It is a 

noticeable result, exhibited in section 2, that the heated 

above situation is always stable even for not necessarily 

infinitesimal disturbances. Moreover, in order to explain 

the apparent contradiction, in section 3 we investigate the 

reasons which are responsible for the instability result given 
in [1]. 

Although the differential system of Wollkind and Frisch 
has a doubtful applicability to the problem at hand, we 

think that other stability problems may possess the same 

features. That is why in section 4 we develop a nonlinear 

energy stability analysis for their modified system. Coherently 

with [1 ], it is shown that, for such a system, instabilities 
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may occur. 

2. ENERGY STABILITY FOR THE HEATED ABOVE 
CASE 

The model with which Wollkind and Frisch commence 
considers a dissociating fluid contained in the infinite layer 

0 < z < d and attention is restricted to essentially isochoric 

motions by adopting a Boussinesq-type approximation. The 

mass flux through the boundaries z = 0, d is zero and the 

prescribed temperatures there are T 0, T1, with T 1 > T 0. 
The relevant equations, (1) - (4) of  [1], admit a steady 
solution in which the velocity is zero, the fraction, a, of  

free atoms is constant and the temperature, T, is linear in 
z across the layer. 

In non-dimensional form the equations for the perturbation 

to the constant concentration solution are 

hi = --P,i  + 6i3(R0 + q~) + Aui,  

Sc~ = Ar  - - X l r  ' (1) 

X 1 PrA 
PrO = - - R w  +A0 + (S + PrA/ScR)A4) - -  ~, 

ScR 

where u, 0, r p are the perturbation fields of  velocity (sole- 

noidal), temperature, fraction of  free atoms and pressure, 
R 2 is the Rayleigh number, A is the three-dimensional 

Laplacian, a superposed dot denotes the material derivative, 
w = u 3 and where for completeness we include below the 

non-dimensionalization appropriate to the notation of  [ 1 ]: 

Sc = v/O~2 , Y 1 = d 2/7"002, g = ~,O/Pocl, 

Pr = v/tq S =D~ A = c2o~/Clb, 

The functions u, 0, ~b, p are assumed periodic in x, y 
and satisfy the boundary conditions 

ar 
u = 0 ,  - - = 0 ,  0 = 0 ,  (2) 

az 

o n z  = 0 ,  d. 

To investigate nonlinear stability we now define, for 
X(> 0) to be chosen, an energy Ex(t) by 

Ex(t) = 1/2 (11 u II 2 +er l l  0 II 2 + XScll 112), (3) 

where II. II denotes the norm on the Hilbert space L2(V), 
V being a period cell of  the perturbed solution. The idea 
of  coupling constants, i.e. 3, in (3), in energy theory was 
developed extensively by D.D. Joseph (see e.g. [3]) and 

leads to a very powerful method for determining when a 
system is stable as opposed to standard linear theory which 
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only yields information on instability. Such a stability 

boundary may then be used to find the parameter region 

in which subcritical instabilities may occur. 
In this work, the independence of  equation (1)2, allows 

us to use X in a different way from the normal theory of  

the best X [3]. Let D(.) denote the Dirichlet integral of  a 

quantity and then from (1) we may derive 

E x  = ( r  w )  - -  D ( u )  - -  XD(r  - -  D ( O )  - -  X X  1 II r II 2 

PrA ) X 1PrA 
-- S + - -  D(r  <r (4) 

ScR ScR 

From use of  the arithmetic-geometric mean and Poincar~ 

inequalities we next establish the following estimates, 

(r w)  < 1/2 ~k 1 II w II 2 + 1/2 ~.11 I[r I[ 2, 

( P r A )  1 3 { PrA) 2 
-- S +  ~cR O(O, r 7 D ( O ) +  4 S +  RS--~ D(r 

X 1 PrA 1 3 (X 1 PrA ) 2 
- -  ( r  o><= - D ( O )  + 1t r 2, 

RSc 3 4), 1 (RSc) 2 

where )'l is the constant in Poincar6's inequality X 1 [1 w 1[2 
<< II Vw II 2. These estimates are used in (4) and we then 

select X so large that 

3 ( PrA 12 3 X1PrA 2 (  I 
X= >_ - -  S + and X X I >  )kll + - -  . . 

4 RScl  - 2X 1 \ ~ c  I ' 

and from the resulting inequality and further use o f  Poincar6's 

inequality we obtain 

Ex <.6 --ME x, 

where 

M = min{X1,2X 1/3Pr, X 1/Sc}. 

Clearly then, E x -+ 0, t -+ oo, and so there is no instability 

when the fluid layer is heated from above. (Such a conclusion 

was suggested by Wollkind and Bdzil [4], although their 

evidence was presumably based on linear theory). 

3. EXPLANATION OF THE APPARENT CONTRA- 

DICTION 

For the heated above case it remains to explain why 
Wollkind and Frisch predicted instability. The reason is that 
they postulated ad hoc relations between a and T of the 

form & = ~J' ,  a a  = BAT, for a constant ~; relations which 

they attribute to a modification of  Lighthill's model [5]. 

However, Lighthill derives a differential relationship con- 

necting a, p and T in changes between states of  equilibrium 
and uses this to eliminate the gradients of  a and p to simplify 

the heat and mass flux expressions. In [ 1 ] such a relationship 
is extended to include time derivatives; we believe that great 

care must be exercised with such quasi-equilibrium appro- 
ximations when dealing with time derivatives, an assertion 
borne out by our energy stability analysis. It is convenient 
at this point to cite Truesdell and Toupin [6], pp. 649 - 650, 

who in their account of  differential relationships in a chemical 

reacting mixture assert: While writers on <<irreversible thermo- 
dynamics>> sometimes use the relations of this section in 
problems concerning deformation, we are unable to find 
any solid ground for ascribing any relevance to them except 
in equilibrium. 

In the light of  these remarks the present work assumes 
much relevance as one interpretation is that it provides 

solid ground against their employment in contexts involving 

deformation. 
The work of  Woilkind and Frisch [ 1 ], concerns a mathema- 

tically interesting system which is likely to model other 
stability problems. This motivates the energy stability analysis 

which is given in next section. In fact we find a nonlinear 

energy boundary which complements well the linear analysis 

of  [1] and determines a close band of  Rayleigh numbers 

for which subcritical bifurcation may be possible. As far 

as we are aware this is the first time a fully nonlinear energy 
analysis has been used to suggest instabilities may occur 

when a system is heated from above. 

4. AN ENERGY ANALYSIS FOR THE MODIFIED 
SYSTEM 

A perturbation to the constant concentration equilibrium 

solution for the modified system of  [1] (using the same 

chemical quasi-equilibrium approximation) satisfies the 

equations 

tJi =--P,i + gakiO + gbki(P + vaui '  

b = ~w + ~A0, (5) 

0 = 3w --Me +D~ 

for divergence free u. The constant coefficients are in the 

notation of  [ 1 ] and we do not include them explicitly as we 

give a non-dimensional version, which corresponds to our 

notation, below. A key factor is that from (5)2,3r = 

= AS0[(DI~ -- ~c~M] and hence r may be eliminated to yield 

the following (non-dimensional) equations: 

iti = --P,i + ~i3 R(O + eBAO) + Au i, 
(6) 

PrO = --Rw + AO, 

in which eB is a reaction term, o f  small magnitude, introduced 

in [1]. 
It is interesting to observe that the eB term in (6) is a term 

which would make that system non-symmetric even in the 

heated below case. We may expect, therefore, from the work 
of  Galdi and Straughan [7 ] that the energy and linear critical 

Rayleigh numbers will not be the same. 
To investigate the stability of  the zero solution to (6), 

we choose 

E(t) = 1/2 [I u 1[ 2 + l / 2 e r  H 0 {I 2 . (7) 

The energy equation appropriate to (7) is determined to be 

= RI- -  ~ ,  (8) 

where 

~ = D ( u )  +D(O). 1= --eBD(O, w). 
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Define now 

1 I 
- - -  = max - -  (= X), (9) 
R e 

where the maximum is over the space of admissible solutions 

and from (8) 

1 1 ) 
E_-< -- ~ R  (10) 

~R R E 

If now R < RE, (10) and Poincar4's inequality show that 

E ~ 0 exponentially, as t ~ .  

The problem is then to find Re ,  or equivalently X, as in 

(9). To this end we derive the Euler-Lagrange equations 

for this maximum as, 

eB6i3 A0 + 2XAui = 2p, i, 

e B A w  + 2XA0 = 0. 
(11) 

These equations are linear and so we may use a normal 

mode technique to obtain 

4X2 ( /9 2 _ a 2 )2 W = - -  a 2 ( e B )  2 (D 2 - -  a 2 )W (12) 

where D = d/dz, a 2 is the wave number and W(z) is the 

z p&t~ of u 3 . For the two free boundaries situation covered 

in [1] the boundary conditions allow W to be composed 

of sin rnnz, m = 1, 2 , . . . ,  and (12) yields 

(eB)2a 2 
X 2 = (13) 

4(m2~r 2 + a 2) 

Obviously, as a function of m, X is maximum for m = 1. 

We then see that the maximum of X is achieved aymptotically 

as a 2 -~ ~.  We may, therefore, conclude that R e = 2/eB. 

If we denote by R~ the critical Rayleigh number of 

linear theory, the asymptotic expression given in [1 ], eq. 

(36), is 

4 2rr 2 

R2 = (---eB) -----# + eB + 0(1), (14) 

which compares with the energy limit 

4 
R 2 - (15) 

(e~) 2 

Estimates (14) and (15), which agree to leading order, 

determine quantitatively a band of Rayleigh numbers where 

subcritical bifurcation may occur. 

The discussion just completed is concerned with the 

situation in which the fluid layer is heated from above 

and clarifies what might have appeared to be an anomaly 

between the present work and that of Wollkind and Frisch [1 ]. 
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