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Abstract  

The analysis of the admissibility of a potential representation for the Riemann tensor is here 
continued. As in the preceding paper, the starting point is to regard the relationship between 
the Riemann tensor and its possible potential as a system of partial differential equations 
determining the unknown potential. The first result, strengthening a previous conclusion, is 
that there never exist ordinary solutions. Surprisingly enough, in a four-dimensional Rie- 
mannian manifold the existence of singular solutions is established without requiring any 
integrability condition. Possible applications and generalizations are also suggested. 

w Introduction 

r 

In a previous paper [1] (henceforth denoted by I) we examined the possi- 
bility o f  expressing the Riemann and Weyl tensors in terms of  the covariant de- 
rivatives of  third-order tensor potentials [2, 3] .  There we emphasized the role 
of  such representations within the framework of  relativity and geometry, also 
through specific examples. However it was the central point of  our analysis to 
decide whether such representations are allowed or not by regarding them as 
partial differential equations in the unknown tensor potentials. On appealing to 
Cartan's theory [4],  we were able to conclude that the Weyl tensor always admits 
Lanczos' representation [2], whereas we found that the corresponding Brinis- 
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Udeschini's formula [3] for the Riemann tensor, namely, 

Rabccl = Habc;d - Habd;c + Hcaa;b - Hcclb;a (1) 

where Hab c = H[abl c, H[abcl = 0, does not always admit a solution Hab c for a 
given Rabcc l. Since our aim is to proceed with the investigation of equation (1), 
we must illustrate, in a more rigorous way, the pertinent results obtained in I. 

So as to avoid algebraic troubles due to the cyclic property of Rabccl, we 
showed that the existence of a solution to equation (1) is mathematically equiv- 
alent to the existence of a solution Tab c = T[ab] c to equation 

gabccl = T {abc;d } (2)  

where Nabca enjoys the symmetry properties 

Nabcd = N[ ab l [ca] = Ncaab (3) 

In (2) the curly braces are a shorthand notation for the following linear opera- 
tion on the indices (abed): 

{(abcd)} = 1 [ ( a b e d ) -  ( b a c d ) -  (abdc) + (badc) 

+ (cdab) - (cdba) - (dcab) + (dcba)] 

where the factor 1 is introduced here for making the braces into a projection 
operator. Besides this reformulation of the problem (1), we introduced the 
hypothesis of generic conditions by letting the data Nabca be constrained by (3) 
only. As a consequence of this definition, the field Nabcd is generic if the num- 
ber of its nonnull algebraically independent components is exactly 21, that is the 
maximum number compatible with (3). Therefore we exhibited the proof that, 
under generic conditions on Nabccl, equation (2) does not admit any ordinary 1 
analytic solution. It is important to realize that such a result does not prevent 
the existence of nonordinary solutions to (2) and, in turn, to (1) (cf. examples 
presented in I). 

This paper is devoted to making the last statement precise and operative. To 
this end, the first unavoidable step consists in a preliminary analysis of the con- 
ditions for an ordinary solution to equation (2) to exist; see I, equation (23). 
The arialysis shows that the hypothesis of generic conditions can be removed 
and, meanwhile, leads to the conclusion that equation (2) never admits ordinary 
solutions (Section 2). This result enables us to look at singular solutions by 

1 Sometimes, as we did in I, ordinary solutions are called regular solutions; here we prefer 
the use of ordinary solutions in order to adhere more closely to Cartan's terminology [4] .  
Observe in passing that Cartan's procedure provides also a self-consistent and nonambiguous 
classification scheme for solutions to systems of partial differential equations, which we 
shall refer to in the sequel. Roughly speaking, ordinary solutions and nonordinary solutions 
(or rather Cartan's singular solutions) correspond, respectively, to the usual general solu- 
tions and the usual singular solutions to a system of partial differential equations (for tech- 
nical details on this remark see, e.g., [4, 5] ). 
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having recourse to Cartan's prolongation procedure [4]. The surprising feature 
of the problem at hand is that, in the four-dimensional case, equation (2) does 
always admit singular solutions irrespective of the data Nat, ca and of the under- 
lying geometry; in other words, the existence of singular solutions to (2) is not 
subject to any integrability condition (Section 3). In Section 4 we briefly sum- 
marize the content of the paper with a view to pointing out posssible applica- 
tions and generalizations of the representation (2). In particular we mention that 
our results still hold even if the Levi-Civita connection is replaced by an arbitrary 
affine connection. As a final remark, we also discuss the existence of singular 
solutions to (2) in an n-dimensional Riemannian manifold, n ~ 4. 

Following I, the paper has been so organized that the proofs of the theorems 
may be omitted without loss of mathematical continuity. Nevertheless we would 
like to stress that the technical aspects of our approach to (1) become important 
insofar as they constitute a nontrivial application of Cartan's systematic pro- 
cedure for the study of partial differential equations. Within this context, the 
present problem provides also an example where the nonexistence of ordinary 
solutions does not imply any integrability condition for the existence of singular 
solutions. 

w Nonexis tence o f  Ordinary Analyt ic  Solutions 

The application of Cartan's geometric theory of partial differential equations 
relies upon a preliminary reformulation of the problem at hand in terms of ex- 
terior differential equations. In our case, as shown in detail in I, equation (2) is 
equivalent to the closed exterior differential system 

Z{abca} - Te,[aape~e) + Te{acP~a) - Nabcd = 0 (4a) 

dTabe - Zabee dxe = 0 (4b) 

dZ {abca} - Aabcae dxe = 0 (4c) 

dZabce A dxe = 0 (4d) 

where 
/ / 

Aabca e = A (abca) e = Zf(aa[elP bc) - Zf{ac[e{P ha) 

+ Ty{adP~r - Ty{acP~d),e +Nabcd, e (5) 

The system (4) is defined on a formal 124-dimensional (analytic) manifold ~, 
whose local coordinates are (x a, 1"abe, Zabca). So as to arrive at integrability 
conditions for the system (4) through Cartan's geometric procedure, the non- 
existence result of I must necessarily be refined. Precisely, the generic condi- 
tions on Nabca must be removed thereby obtaining the proper mathematical 
setting for making Cartan's procedure operative. 
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The following theorem, holding for every field Nabed, generalizes the state- 
ment (i) of the theorem proved in I and hence represents the crucial starting 
point for the subsequent investigation. 

Theorem 1. Consider an analytic four-dimensional Riemannian manifold 
and let Nabcd be an analytic tensor field satisfying the symmetry properties (3). 
Then there does not exist any local ordinary analytic solution to equation (2) 
whatever be the choice Of Nabcd. 

Proof. The theorem is proved by showing that the exterior system (4) on 
does not admit any ordinary four-dimensional integral manifold involutive 

with respect to x 1 . . . . .  x 4. Accordingly, we have recourse to Cartan's necessary 
and sufficient condition for involutiveness (see [4], p. 91) which requires that 
the reduced Cartan characters s} coincide with the corresponding Cartan charac- 
ters s i. The integers s~ and si are evaluated through a step-by-step procedure, 
described in detail in I, which will be used here without any further reference. 

Let P be a point of ~ where (4a) holds. Introduce the unknown vector 

X = X a ~x-~. -t- X a b  e ~ ~ X a b e d  
~ Tabe ~Zabcd 

belonging to the tangent space to ~1l at P and consider the algebraic linear system 

Sab c - Zabce X e = 0 (6a) 

X{abcd} - Aabed e X e = 0 (6b) 

The first step consists in determining the vector YO) as the general solution 
to (6). To this end, we observe that any tensor Fabcd = Fiabled may uniquely be 
split as 

Fabed = T'abed + Fabed + Fabed 

where 

kabed --  a tedl = -k ab 
A A 

[;'abed = Fab (ca) 

Since Aabed e = A {abed}e, we find that 

Ya O) = Zabed Yi~) =: Zabel be 

id(1) ~(1) + 9(i) 
bed = Aabcdl + ~ abed z abcd (7) 

where Yg), IP~)d, I~a(~) d are arbitrary tensors satisfying the pertinent symmetries. 
The notation V. .a  = V..aY~a) will be used throughout. 
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In the second step we calculate the vector .I+(2), solution to (6) and to 

XabedY~co v(a) v d - , a b e d ~  = 0 ( 8 )  

where a = 1. It turns out that 
y(2) 

abe = Zabe2  

y(2) .~(2) + G(2) (9) abed = A abed 2 + i abed 1abed 

where Y~2)is arbitrary and Y[la)Y~2 ]) 4:0, while IPa(~)cd and l~a(~{d satisfy the fur- 
ther relation 

.$ (2) - (1) G (1) ( 1 0 )  Y(a2b~l + ~abc l  = r a b c 2  + + l a b c 2  Aabc21 - A a b c l  2 

as a consequence of (7), (8), (9). 
As shown in I, it is the third step that gives rise to the first internal identity 

in the evaluation of s'2, whereas in the corresponding evaluation of s2 it leads to 
the condition 

Y(~)e - Y(~e - 2A121~e =0  

which must be identically true for the system (4) to be involutive. Now, in view 
of (7), (9), (10), the previous condition reads 

~ ( 2 )  - 3A1211~e] =0  (11) - 

G(2) . which implies significant restrictions on I~(~) d and on ~abca Since Cartan's pro- 
cedure does not allow the imposition of further restrictions on the solutions to 
(6), (8), we conclude that condition (11)can never be satisfied. Hence the system 
(4) is not involutive with respect x I . . . .  , x 4 , whatever be the data Nabed. 1 

An intuitive idea of the content of Theorem 1 may be obtained as follows. 
By construction, the system (4) is closed in ~ and therefore it is completely 
integrable in N; then there exists the class of the four-dimensional ordinary in- 
tegral manifolds belonging to the general solution of the system (4). What Theo- 
rem 1 tells us is that the equations defining the generic four-dimensional integral 
element always imply relationships among dx 1 . . . . .  dx 4. Hence we cannot take 
x 1, . . . ,  x 4 as independent variables for the system (4), in the case of four- 
dimensional integral manifolds. Accordingly, possible solutions to (2) are neces- 
sarily related to singular solutions to (4). 

w Existence o f  Singular Analytic Solutions 

The method for obtaining singular solutions to an exterior differential 
system with p independent variables has been introduced in the literature by 
E. Cartan through the notion of prolongation. In essence, this consists in a sys- 



428 BAMPI AND CAVIGLIA 

tematic procedure based on the addition of new equations, and possibly of new 
variables, to the original system in such a way that its solutions are in one-to-one 
correspondence with the solutions of the newly constructed system. The interest 
in this prolongation procedure is that, under certain conditions, every solution 
to the original system becomes a general solution after a finite number of pro- 
longations [6] (see also [5]). 

On appealing to this technique, we are able to prove the following. 

Theorem 2. Consider an analytic four-dimensional Riemannian manifold 
and let Nabca be an analytic tensor field satisfying the symmetry property (3). 
Then there do always exist local singular analytic solutions to equation (2). 

Proof. In the present case, Cartan's prolongation procedure goes as follows. 
First of all, complete the set of 1-forms appearing in (4) to a base of the cotan- 
gent space to ~ at P by introducing the 1-forms r = dZabcc l - dZ{abcd}. 
Then express COabca in terms o f d x  1 . . . .  , dx  4 ; in full generality one has 

A 

COabca = (Wabcde + Wabcde) dxe (12) 
- -  - -  - -  / x  / , ,  

where Wabed e = Wlab] teal e = - Wcdabe, Wabcde = W[abl (ca)e. Now, because of (4c), 
substitution of (12) into (4d) yields 

Wat~ctael + I~a~ctael + Aabc[ae] = 0 (13) 

As a consequence of the last paragraph of the Appendix, in the four-dimensional 
case equations (5) are always algebraically compatible independently of the 
choice of the data Aabca e. Hence the first prolongation of the system (4) is 

_ / x  

achieved by regarding Wabca e and Wabcd e as new unknowns and by adding to 
equations (4) the new equations (12), (13) and their exterior derivatives. In so 
doing the prolonged system turns out to be defined on a formal 424-dimensional 
(analytic) manifold ~1 whose local coordinates a r e  ( x  a , Tabc,  Zabca, ~l/abcde, 

Wabeae). Explicitly the prolongation reads 

Z.[abcct ) - Te(aape~c} + Te(acpe~a} - Nabcd = 0 (14a) 

Wabc[de] + I~abclde] + Aabc[del = 0 (14b) 

dTat~c - Zabce  dr. e = 0 (14c) 

dZabcd - (Wabccle + l~abcde + Aabcae) dxe  = 0 (14d) 

dff/abci de ] + d~/abc[ de ] + Babe[ del . f dx  f = 0 (14e) 

dWat, cae A dx  e = 0 (14f) 

dff/abcae A dx  e = 0 (14g) 

where Ba~edef = B {abca}ef is defined by dAabcd e = Bal~ccley dx  f.  It should be 
noted that, since equation (4c) is closed, its exterior derivative is identicaUy 
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zero. Hence dAabcd e /~ dx  e vanishes identically, whence 

Babcdef = Babca(ef) (15)  

We are now in a position to prove that the system (14) is involutive with 
respect to x 1 . . . . .  x 4 by showing that s~ = si (i = 0 . . . . .  3). From now on, the 
procedure follows along lhe lines of Theorem 1 (see also I). 

Let Q be a point of 9l where (14a, b) hold. The characters s~) and So are 
related to the rank of the algebraic linear system 

Xa~c - Zabca X a  = 0 (16a) 

Xabca - ( lCabcae + [~abcde + Aabcde) X e  = 0 (16b) 

f(abctael + Xabciael + Babc[ael ; X f  = 0 (16c) 

where 

X X a ~ + Xabc 0 a - 0 A 0 = - - +  Xabcd - -  + Xabca e - -  + Xabed e 
OX a O Tab c OZabca a l~abca e O Wabcd e 

i,; an unknown vector tangent to ~ at Q. A direct inspection of the system (16) 
yields So = So, while the vector }1(0, solution to (16), is given by 

= Zabca r(1) =: Zabc,  
ya(1) - i ,  

bcd= reVabcdl + rl4]abcdl + Aabcdl 

] ) g ) e  = ya(1)c~e + ])(DOe (17a)  

Y(~)de = - -~ (gabe(cd)l + }z(alb)n(cd) + f(a~)~cd)) + 41b)cde (17b) 

where the explicit expressions of the solutions (17a, b) to (16c) have been deter- 
n'tined in the Appendix. 

To proceed further, we have to enlarge the system (16) by adding the 
equations 

- e ~ - ( a )  .ve 
Xabcde Y(a) - "~ abcde A = 0 (18a) 

A 

Xabcae Y~a ) v(~) .ve 
- ~ abcde.a. = 0 (18b) 

where, for the present, a = 1. Then the system (16), (18) satisfies the condition 
s'l = st and hence it is possible to determine a second vector Y(2), linearly inde- 
pendent of YO), as the general solution to (16), (18). Explicitly from (16)we find 

Y2,)  = Zabca rg) = :  

~-a(2) -,7- (2)n -~(2)o (19a) bcde= ~ abede + �9 abcde 
]~a(2) ~ ( 2 ) n  -,7-(2)o ~ ~(~) 

bode = - 2 (Babe(ca)2 + ~ abe(ca) + i abe(ca)) + t.'abcde (19b) 
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while conditions (18) read 

~a(2)o -~0)o ~-0)n ~(2)n (20a) 
b c d l  = i a b e d 2  + ~ a b c d 2  - * a b c d l  

~(2)n V(1)n 
Uabccll~(2) _- Uabcd2~(1) + ~ (Babl(cd)2 - Bab2(ccl)l + ~ abl(cd) - �9 ab2(cd) 

+ atn(ccl) - ~ ab2(cd)3 (20b) 

Now the algebraic system to be considered consists of equations (16), (18), 
with a = 1,2. At this step, when determining s~ and s~, we arrive at a relation 

r which must be identically true in order that s2A = s2. Specifically, multiplying 
d e (16c) by Yo)Y(2)  and eliminating fa t ,  c[ 121 - Xat, c[21] by means of (18) lead to 

~a(2) ~(1) + C~(2) ~0) + (21) b c l d  - i a b c 2 d  .t a b c l d  - a a b c 2 d  2 B a b c [ l a ] d  = 0 

As a rather lengthy but straightforward calculation shows, relation (21) results in 
an identity because of (17), (19), (20). This allows a vector YO), linearly inde- 
pendent of Y0), Y(2), to be found as a solution to (16) and (18), with a = 1,2. 

Analogously, the analysis of the system (16), (18), a = 1,2, 3, provides the 
last result, namely, s~ = s3. In conclusion the exterior system (14) is involutive 
with respect to x 1 , . . . ,  x 4, independently of the data Nabca and of the geom- 
etry, thereby ensuring the existence of singular solutions to equation (2). �9 

It seems worthwhileto comment briefly on Lanczos' differential gauge 
which consists in the possibility of choosing the skew-symmetric t ensor  Tabe;e 
arbitrarily [ 1,2].  Consistently with the statement (iii) of the theorem proved 
in I, it may be shown that the differential system formed by equation (2) and 
by an arbitrary condition on Tabe;e (e.g., Tabe;e = 0) always admits singular 
solutions. This fact can easily be proved by a slight modification of the previ- 
ous proof. 

w Discussion 

In this second paper we have continued the investigation concerning the 
existence of third-order potentials for the Riemann and Weyl tensors. The first 
result, strengthening the theorem proved in I, is that equation (2) does never 
admit any ordinary solution (Theorem 1). Usually this does not prevent the 
existence of solutions at all, but rather suggests that solutions can be found pro- 
vided the data satisfy suitable integrability conditions. The problem of deter- 
mining them was left open in I. Here we have achieved the unexpected result 
that, in the four-dimensional case, no integrability condition is required (Theo- 
rem 2). In other words, looking at the class of singular solutions allows a third- 
order tensor potential to exist without any restriction on the given tensor Nabca 
and on the geometric structure of the underlying Riemannian manifold. 

We may now summarize the main result of this paper by saying that every 
tensor Nabea, defined on an arbitrary four-dimensional Riemannian manifold and 
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enjoying the symmetry properties (3), always admits a third-order tensor poten- 
tial Taa c via equation (2). Of course the study of the representation (2) will be of 
special interest chiefly in connection with those tensor fields whose importance 
is already established on geometric (or physical) ground. Particular results have 
been obtained in conjunction with the Riemann tensor [7, 8] while the case of 
the Levi-Civita alternating tensor has been completely solved in I. Another non- 
trivial consequence of our analysis is that the Weyl tensor too allows the repre- 
sentation (2), besides the one discovered by Lanczos [2] ; see also I, where it is 
shown that Lanczos' formula always admits ordinary solutions for the potential, 
and Ref. 9, where explicit Lanczos' representations have been found. As a further 
example, we observe that the tensor gacgbd - gadgbc, built up with the sole 
metric tensor gab, meets the symmetry properties (3) and then it has a potential 
representation; in this case multiplying equation (2) by gbd yields the relation 

3gac = 1 (Tabc;b + Tcbaab _ Tabb;c - Tcblj;a) 

whereby Taz, c plays the role of a potential for the metric gaz, itself. 
Another significant feature of the representation (2) is that, in a sense, it is 

valid irrespective of the choice of the affine connection. More precisely, simply 
by regarding the P's in (4a) and in (5) as the coefficients of an arbitrary affine 
connection V, Theorems 1 and 2 imply that the equation 

Naacd = V {aTabc} 

does always admit singular solutions, even though it never admits ordinary 
solutions. 

Finally, we discuss briefly the existence of singular solutions to (2) in an 
n-dimensional Riemannian manifold (the case of ordinary solutions has been 
presented in I). Our conclusions depend strongly on the structure of equation 
(A6). Specifically, as follows from Theorem 2, when n ~< 4 there exist singular 
solutions to (2) independently of the choice of the tensor Naacd and of the affine 
connection. When n ~> 5 equation (A6) places nontrivial restrictions on the data. 
In this instance, definite results can be obtained by studying the algebraic com- 
patibility of (A6) and possibly by examining successive prolongations of the 
system (4). 

A p p e n d i x  

Consider the algebraic system 
- -  A 

Xabc[de ] + Xabc[cle] + Dabc[de ] = 0 

where Dabcd e = D{abcd} e is a given tensor, while 
A 

L b c d e  = X[ab][cd]e = - ~ d a b e ,  L b c d e  = X[ab](cd)e 

(A1) 
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A 

are unknown tensors._ Since Xat~[cdel vanishes identically, the system (A1) admits 
solutions provided Xabccte satisfies the condition 

f(ab[cael + Dabicde] = 0 (A2) 

In view of (A2), the system (A1) may be cast into the alternative form 

2XabeIcd ] = ](abed e + Dabcd e 

It is_easy to verify that, on account of (A2), Xabcae may be expressed in terms 
of Xabcae and Dabcd e through the relation 

Xabcde = - 2 (f(abe(cd) + Oabe(cd)) + Oabcde (A3) 

where %bcae = O[ab] (cae) is an arbitrary tensor. This shows that condition (A2) 
/ x  

is also sufficient for determining the general expression of Xabcde. 
So as to discuss the system (A2), observe first that the relations 

f(att, lclcte] - )(btclalde ] = 0 (A4) 

Dalclblae ] + DbIcla[ae ] = 0 (A5) 

hold identically owing to the symmetry properties of Xat>cae and Dabcd e. A nec- 
essary condition on Da~cae, in order that the system (A2) be solvable, may be 
derived as follows. Perform on the indices abcde of (A2) the operations [abc] de 
and a[blcldel  - c[blalde] .  Then, after a suitable relabeling of the indices, com- 
pare the two expressions so obtained. The use of (A2), (A4), (A5) leads to the 
compatibility condition on the data Dabcde, namely, 

Dab[cde] + 2D[cdel[abl + 2Db[clalael = 0 (A6) 

Whenever Dabcd e satisfies (A6), the general solution to (A2) takes the form 

- - n  - 0  
Xabcd e = Xabcd e + Xabcd e 

where 

- n _ 2 (Deacd b + Dedabc + Xabcde - -g - Debcaa - Decabcl Delab][cal - De[cal[abl) 

is a particular solution to (A2), while -0 Xabcae is the general solution to 

Xab[cde ] = O, 
To summarize, a necessary and sufficient condition for the existence of solu- 

tions to (A1) is that (A6) holds. 
It is a striking feature of the condition (A6) that it reduces to an identity 

unless the indices abcde are all different. As a consequence, when the dimension 
of the manifold is not greater than four, (A6) does not place any restriction on 
the data Dabcd e. 
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