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Abstract

The analysis of the admissibility of a potential representation for the Riemann tensor is here
continued. As in the preceding paper, the starting point is to regard the relationship between
the Riemann tensor and its possible potential as a system of partial differential equations
determining the unknown potential. The first result, strengthening a previous conclusion, is
that there never exist ordinary solutions. Surprisingly enough, in a four-dimensional Rie-
mannian manifold the existence of singular solutions is established without requiring any
integrability condition. Possible applications and generalizations are also suggested.

8(1): Introduction

In a previous paper [1] (henceforth denoted by I) we examined the possi-
bility of expressing the Riemann and Weyl tensors in terms of the covariant de-
rivatives of third-order tensor potentials [2, 3] . There we emphasized the role
of such representations within the framework of relativity and geometry, also
through specific examples. However it was the central point of our analysis to
decide whether such representations are allowed or not by regarding them as
partial differential equations in the unknown tensor potentials. On appealing to
Cartan’s theory [4], we were able to conclude that the Weyl tensor always admits
Lanczos’ representation [2], whereas we found that the corresponding Brinis-
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Udeschini’s formula [3] for the Riemann tensor, namely,

Rabcd =Habc;d - Habd;c +Hcda;b - Hcdb;a (1)

where Hype = Higpcr Hiape) = 0, does not always admit a solution Hy, for a
given R 5.4 Since our aim is to proceed with the investigation of equation (1),
we must illustrate, in a more rigorous way, the pertinent results obtained in I.

So as to avoid algebraic troubles due to the cyclic property of Ry, we
showed that the existence of a solution to equation (1) is mathematically equiv-
alent to the existence of a solution T,p, = Tj4p) to equation

Nabcd = T{abc;d} (2)
where N34 enjoys the symmetry properties
Nabcd = N[ab] led] = chab (3)

In (2) the curly braces are a shorthand notation for the following linear opera-
tion on the indices (abed):

{(abcd)} = & [(abed) - (bacd) - (abdc) + (badc)
+ (cdab) - (cdba) - (dcab) + (dcba)]

where the factor % is introduced here for making the braces into a projection
operator. Besides this reformulation of the problem (1), we introduced the
hypothesis of generic conditions by letting the data N,;.,; be constrained by (3)
only. As a consequence of this definition, the field N4 is generic if the num-
ber of its nonnull algebraically independent components is exactly 21, that is the
maximum number compatible with (3). Therefore we exhibited the proof that,
under generic conditions on N4, equation (2) does not admit any ordinary!
analytic solution. It is important to realize that such a result does not prevent
the existence of nonordinary solutions to (2) and, in turn, to (1) (cf. examples
presented in I).

This paper is devoted to making the last statement precise and operative. To
this end, the first unavoidable step consists in a preliminary analysis of the con-
ditions for an ordinary solution to equation (2) to exist; see I, equation (23).
The analysis shows that the hypothesis of generic conditions can be removed
and, meanwhile, leads to the conclusion that equation (2) never admits ordinary
solutions (Section 2). This result enables us to look at singular solutions by

1Some’times, as we did in I, ordinary solutions are called regular solutions; here we prefer
the use of ordinary solutions in order to adhere more closely to Cartan’s terminology [4].
Observe in passing that Cartan’s procedure provides also a self-consistent and nonambiguous
classification scheme for solutions to systems of partial differential equations, which we
shall refer to in the sequel. Roughly speaking, ordinary solutions and nonordinary solutions
(or rather Cartan’s singular solutions) correspond, respectively, to the usual general solu-
tions and the usual singular solutions to a system of partial differential equations (for tech- '
nical details on this remark see, e.g., [4, 5]).
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having recourse to Cartan’s prolongation procedure [4]. The surprising feature
of the problem at hand is that, in the four-dimensional case, equation (2) does
always admit singular solutions irrespective of the data N,;.4 and of the under-
lying geometry; in other words, the existence of singular solutions to (2) is not
subject to any integrability condition (Section 3). In Section 4 we briefly sum-
marize the content of the paper with a view to pointing out posssible applica-
tions and generalizations of the representation (2). In particular we mention that
our results still hold even if the Levi-Civita connection is replaced by an arbitrary
affine connection. As a final remark, we also discuss the existence of singular
solutions to (2) in an n-dimensional Riemannian manifold, n # 4.

Following I, the paper has been so organized that the proofs of the theorems
may be omitted without loss of mathematical continuity. Nevertheless we would
like to stress that the technical aspects of our approach to (1) become important
insofar as they constitute a nontrivial application of Cartan’s systematic pro-
cedure for the study of partial differential equations. Within this context, the
present problem provides also an example where the nonexistence of ordinary
solutions does not imply any integrability condition for the existence of singular
solutions.

8(2): Nonexistence of Ordinary Analytic Solutions

The application of Cartan’s geometric theory of partial differential equations
relies upon a preliminary reformulation of the problem at hand in terms of ex-
terior differential equations. In our case, as shown in detail in I, equation (2) is
equivalent to the closed exterior differential system

Z{abcd} - Te {adF;)c} + Te {acrid} - jvabcd =0 (43)
dType - Zabce dx®=0 (4b)

az {abed} ~ Agbede dx®=0 (4c)

dZ g pee Ndx® =0 (4d)

where
_ _ I f
Agpede = A {abcd}e - Zf{ad[e{F bc} - Zf{ac[e[F bd}

f f
+ Tf{adF bc},e - Tf{achd},e +N;zbcd,e (5)

The system (4) is defined on a formal 124-dimensional (analytic) manifold ,
whose local coordinates are (x*, Ty, Z peq)- SO as to arrive at integrability
conditions for the system (4) through Cartan’s geometric procedure, the non-
existence result of I must necessarily be refined. Precisely, the generic condi-
tions on N4 must be removed thereby obtaining the proper mathematical
setting for making Cartan’s procedure operative.
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The following theorem, holding for every field N,;.4, generalizes the state-
ment (i) of the theorem proved in I and hence represents the crucial starting
point for the subsequent investigation.

Theorem 1. Consider an analytic four-dimensional Riemannian manifold
and let N,z be an analytic tensor field satisfying the symmetry properties (3).
Then there does not exist any local ordinary analytic solution to equation (2)
whatever be the choice of Npoq.

Proof. The theorem is proved by showing that the exterior system (4) on
M does not admit any ordinary four-dimensional integral manifold involutive
with respect to x!, ..., x*. Accordingly, we have recourse to Cartan’s necessary
and sufficient condition for involutiveness (see [4], p. 91) which requires that
the reduced Cartan characters s; coincide with the corresponding Cartan charac-
ters ;. The integers s; and s; are evaluated through a step-by-step procedure,
described in detail in I, which will be used here without any further reference.

Let P be a point of M where (4a) holds. Introduce the unknown vector

d ] d

X=X+ Xgpe mo—+ Xapea =5
oxt T BT, " DZapea

belonging to the tangent space to W at P and consider the algebraic linear system
Xave = Zapee X¢ =0 (62)
X{abcd} = Aabede X¢=0 (6b)
The first step consists in determining the vector Y(y) as the general solution
to (6). To this end, we observe that any tensor Fypeq = Figp)cq may uniquely be
split as
Fabcd = Fabcd + ﬁabcd + Fabcd

where

Fapca = F {abea}
ﬁabcd = —ab[cd] =- _cdab
f’abcd = Aab(cd)
Since Aypege = A {abed} e We find that
Y5 = Zabea Y& =+ Zaver
Y = Aapcar + Ywa + Yibea (7)

where Yg), }—’,S,)cd, }?,fll,)cd are arbitrary tensors satisfying the pertinent symmetries.
The notation V.., = V.., Y, will be used throughout.
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In the second step we calculate the vector Y(,y, solution to (6) and to
Xavea¥ Gy = YiseaX” =0 ®
where a = 1. It turns out that
Y32 = Zaser
Y3 = Awpear + Vigoa + Ya‘ZZd )

where Yé) is arbitrary and Y([S Y(b2]) # 0, while Yé bcd and Yﬁz,d satisfy the fur-
ther relation

Y2+ 78 =YY+ P8 + Awvens — Aaper (10)

as a consequence of (7), (8), (9).

As shown in 1, it is the third step that gives rise to the first internal identity
in the evaluation of s3, whereas in the corresponding evaluation of s, it leads to
the condition

1(31)e Yie - 2A1210¢ = 0
which must be identically true for the system (4) to be involutive. Now, in view
of (7), (9), (10), the previous condition reads

1(2122 Yl(g)el = 3A413[12¢] =0 (1)

which implies significant restrictions on Ya(b)cd and on f’a%d- Since Cartan’s pro-
cedure does not allow the imposition of further restrictions on the solutions to
(6),(8), we conclude that condition (11) can never be satisfied. Hence the system
(4) is not involutive with respect x!, ..., x*, whatever be the data N4 L

An intuitive idea of the content of Theorem 1 may be obtained as follows.
By construction, the system (4) is closed in M and therefore it is completely
integrable in W; then there exists the class of the four-dimensional ordinary in-
tegral manifolds belonging to the general solution of the system (4). What Theo-
rem 1 tells us is that the equations defining the generic four-dimensional integral
element always imply relationships among dx!, . . . , dx*. Hence we cannot take
x',...,x* as independent variables for the system (4), in the case of four-
dimensional integral manifolds. Accordingly, possible solutions to (2) are neces-
sarily related to singular solutions to (4).

8(3): Existence of Singular Analytic Solutions

The method for obtaining singular solutions to an exterior differential
system with p independent variables has been introduced in the literature by
E. Cartan through the notion of prolongation. In essence, this consists in a sys-
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tematic procedure based on the addition of new equations, and possibly of new
variables, to the original system in such a way that its solutions are in one-to-one
correspondence with the solutions of the newly constructed system. The interest
in this prolongation procedure is that, under certain conditions, every solution
to the original system becomes a general solution after a finite number of pro-
longations [6] (see also [5]).

On appealing to this technique, we are able to prove the following.

Theorem 2. Consider an analytic four-dimensional Riemannian manifold
and let N,z be an analytic tensor field satisfying the symmetry property (3).
Then there do always exist local singular analytic solutions to equation (2).

Proof. In the present case, Cartan’s prolongation procedure goes as follows.
First of all, complete the set of 1-forms appearing in (4) to a base of the cotan-
gent space to M at P by 1ntroduc:1ng the 1-forms wypeg = dZ,peq — dZ {abca}-
Then express wypeg in terms of dx!, ,dx*;in full generality one has

Wabed = (Wabcde + Wabcde) dx® (12)

where I';/abcde = I';/[ab] [edle = ~Wedave Wabcde W[ab](cd)e Now, because of (4c),
substitution of (12) into (4d) yields

I'Ilabc[dﬂ + Wabc[de] +Aabc[de] =0 (13)

As a consequence of the last paragraph of the Appendix, in the four-dimensional
case equations (5) are always algebraically compatible independently of the
choice of the data A p4¢. Hence the first prolongation of the system (4) is
achieved by regarding W, .4 and W,p.4. as new unknowns and by adding to
equations (4) the new equations (12), (13) and their exterior derivatives. In so
doing the prolonged system turns out to be defined on a formal 424 -dimensional
(analytic) manifold 1 whose local coordinates are (x?, Type, Zoped> Wabede
Wabcde). Explicitly the prolongation reads

Z fwpea} = Tefaal'be} + Te faeT'ba)} = Navea = 0 (14a)
Wapcjde) *+ Wabc[de] + Aapefae) =0 (14b)

AT 30~ Zapee dx° =0 (14c)

Zabed = Wiapede + Wavede + Agpede) dx° =0 (144)
AWipcide) + AWapefae) + Bapeae)f dx’ =0 (14e)
AWypeqe Ndx€ =0 (14f)

AWypege Ndx® =0 (14g)

where Babcdef = Blped) ef is defined by dAspege = Bapeder dx ¥ 1t should be
noted that, since equation (4c) is closed, its exterior derivative is identically
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zero. Hence dA,pq4e N\ dx® vanishes identically, whence

Babcdef = Babcd(ef) (15)

We are now in a position to prove that the system (14) is involutive with
respect to x*, . .., x* by showing that s;=5;(i=0, ..., 3). From now on, the
procedure follows along the lines of Theorem 1 (see also I).

Let Q be a point of 1 where (14a, b) hold. The characters sp and sq are
related to the rank of the algebraic linear system

Xave = ZapeaX“ =0 (162)
Xabea = Wapeae + Wapede *+ Aapcae) X =0 (16b)
Xavetael + Xavelae) + Bavelael r X7 =0 (16¢c)
where
X=X“—a—+X —t Xppeg Tt X, —+X A
ot Xave g ¥ Kavea Tt Kavede T 0 Aabede T

is an unknown vector tangent to U at Q. A direct inspection of the system (16)
yields so = 5o, while the vector Yy, solution to (16), is given by

Ya(é)c = Zabcd Y(l) Zabcl

@ .
Yebwa = Wapear + Wabcdl + Aypear

Y ioede = Vittoae + Vipese (172)
Ya(é)cde 3 (Babe(cd)l + Ytg)e’zcd ) + Ya(llnzzgcd )) + Oggcde (1 7b)

where the explicit expressions of the solutions (17a, b) to (16¢) have been deter-
mined in the Appendix.

To proceed further, we have to enlarge the system (16) by adding the
equations

Xeeae Yy = Yapoae X =0 (182)
Xapeae Ve~ VapmaeX© =0 (18b)
where, for the present, a = 1. Then the system (16), (18) satisfies the condition
sy =s; and hence it is possible to determine a second vector Y(y), linearly inde-
pendent of Y4y, as the general solution to (16),(18). Explicitly from (16) we find
Ya(bzc) = Zabcd Y(2) Zabcz

Y;z(bcd Wapeaz * Wabcdz + Aapedr
(2) - v(@2)n v(2)0

abcde abede T Y abcde (193)
Ya(lfc)'de 3 (Babe(cd)z +7 a(zg?cd ) +7 be(cd )) + Oab)cde (l9b)
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while conditions (18) read

Ygz& (21%2 + ng)cgz Yé%lgl (20a)
0% a1 = Ohhan + 2 % Bapiedyz ~ Bavatcan * Yﬁ)l'zcd) - Y;Si)zrfcd)
+ chb)1(cd) cgbz(cd)) (20b)

Now the algebraic system to be considered consists of equations (16), (18),
with a = 1, 2. At this step, when determining s'; and s, , we arrive at a relation
which must be 1dent1ca11y true in order that s2 = §,. Specifically, multiplying
(16¢) by Y(l)Y(z) and eliminating Xabc[12] - Xabc[m by means of (18) lead to

Y a- Yaa + Y8 g - T80+ 2Bape[121a =0 23]

As a rather lengthy but straightforward calculation shows, relation (21) results in
an identity because of (17), (19), (20). This allows a vector Y3y, linearly inde-
pendent of Yy, Y(3), to be found as a solution to (16) and (18), witha =1, 2.

Analogously, the analysis of the system (16), (18), a = 1, 2, 3, provides the
last result, namely, s3 = s5. In conclusion the exterior system (14) is involutive
with respect to x*, ..., x*, independently of the data N, and of the geom-
etry, thereby ensuring the existence of singular solutions to equation (2). u

It seems worthwhile to comment briefly on Lanczos’ differential gauge
which consists in the possibility of choosing the skew-symmetric tensor T,;°.,
arbitrarily [1, 2] . Consistently with the statement (iii) of the theorem proved
in1, it may be shown that the differential system formed by equation (2) and
by an arbitrary condition on 7%, (e.g., Tpp°. . = 0) always admits singular
solutions. This fact can easily be proved by a slight modification of the previ-
ous proof.

§(4): Discussion

In this second paper we have continued the investigation concerning the
existence of third-order potentials for the Riemann and Weyl tensors. The first
result, strengthening the theorem proved in 1, is that equation (2) does never
admit any ordinary solution (Theorem 1). Usually this does not prevent the
existence of solutions at all, but rather suggests that solutions can be found pro-
vided the data satisfy suitable integrability conditions. The problem of deter-
mining them was left open in 1. Here we have achieved the unexpected result
that, in the four-dimensional case, no integrability condition is required (Theo-
rem 2). In other words, looking at the class of singular solutions allows a third-
order tensor potential to exist without any restriction on the given tensor N4
and on the geometric structure of the underlying Riemannian manifold.

We may now summarize the main result of this paper by saying that every
tensor N,pqq, defined on an arbitrary four-dimensional Riemannian manifold and



THIRD-ORDER TENSOR POTENTIALS 431

enjoying the symmetry properties (3), always admits a third-order tensor poten-
tial Ty, via equation (2). Of course the study of the representation (2) will be of
special interest chiefly in connection with those tensor fields whose importance
is already established on geometric (or physical) ground. Particular results have
been obtained in conjunction with the Riemann tensor [7, 8] while the case of
the Levi-Civita alternating tensor has been completely solved in I. Another non-
trivial consequence of our analysis is that the Weyl tensor too allows the repre-
sentation (2), besides the one discovered by Lanczos [2]; see also I, where it is
shown that Lanczos’ formula always admits ordinary solutions for the potential,
and Ref. 9, where explicit Lanczos’ representations have been found. As a further
example, we observe that the tensor g,.gpq ~ 82a85c» built up with the sole
metric tensor g,;, meets the symmetry properties (3) and then it has a potential
representation; in this case multiplying equation (2) by g% yields the relation

-1 b b b b
3g4c = Z(Ta ;b t+ T80~ T bie ~ T, b;a)

whereby T, plays the role of a potential for the metric g,,, itself.

Another significant feature of the representation (2) is that, in a sense, it is
valid irrespective of the choice of the affine connection. More precisely, simply
by regarding the I'’s in (4a) and in (5) as the coefficients of an arbitrary affine
connection V, Theorems 1 and 2 imply that the equation

jvabcd = v{dTabc}

does always admit singular solutions, even though it never admits ordinary
solutions.

Finally, we discuss briefly the existence of singular solutions to (2) in an
n-dimensional Riemannian manifold (the case of ordinary solutions has been
presented in I). Our conclusions depend strongly on the structure of equation
(A6). Specifically, as follows from Theorem 2, when n < 4 there exist singular
solutions to (2) independently of the choice of the tensor M., and of the affine
connection. When n 2> 5 equation (A6) places nontrivial restrictions on the data.
In this instance, definite results can be obtained by studying the algebraic com-
patibility of (A6) and possibly by examining successive prolongations of the
system (4).

Appendix

Consider the algebraic system

Xabc[de] +Xabc[de] +Dabc[de] =0 (AI)

where D poge = D [4pca} e is a given tensor, while

Xabcde = X[ab] [cdle = ~Xcdabes Xabcde = X[ab](cd)e
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are unknown tensors. Since )?ab[cde] vanishes identically, the system (A1) admits
solutions provided X4, satisfies the condition

Xab[cde] +Dab[cde] =0 (A2)

In view of (A2), the system (A1) may be cast into the alternative form

2Xabe[cd] = Xabcde + Dabcde

It is easy to verify that, on account of (A2), )?abcde may be expressed in terms
of Xpege a0d Dypege through the relation

Xabcde =- % (Xabe(cd) + Dabe(cd)) * Oapede (A3)

Where Oupede = Ofap] (cde) 18 an arbitrary tensor. This shows that condition (A2)
is also sufficient for determining the general expression of X, pc4e-
So as to discuss the system (A2), observe first that the relations

ja[blctde] - )—(b[clalde] =0 (A4)
Da[c]b|de] + Db[c[alde] =0 (AS)

hold identically owing to the symmetry properties of X, abede 304 Dypege. A nec-
essary condition on D,p.q., in order that the system (A2) be solvable, may be
derived as follows. Perform on the indices abede of (A2) the operations {abc]de
and a[b[clde] - c[b|a|de] . Then, after a suitable relabeling of the indices, com-
pare the two expressions so obtained. The use of (A2), (A4), (A5) leads to the
compatibility condition on the data D,j.4., namely,

Dab[cde] + 2D[cde][ab] + 2Db[c|a|de] =0 (A6)

Whenever D4, satisfies (A6), the general solution to (A2) takes the form

- vh -0
Xabcde = Aabcde + Xabcde
where

X:bcde = %(Deacdb - Debc-da - Decabd + Dedabc + De[ab][cd] - De[cd][ab])

is a particular solution to (A2), while X, ,fbcde is the general solution to
Xab[cde] =0.

To summarize, a necessary and sufficient condition for the existence of solu-
tions to (A1) is that (A6) holds.

It is a striking feature of the condition (A6) that it reduces to an identity
unless the indices abcde are all different. As a consequence, when the dimension
of the manifold is not greater than four, (A6) does not place any restriction on
the data Dypge.
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