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Introduction 

A general theorem of Vainberg delivers necessary and sufficient conditions for 

an operator to admit a variational formulation [i]. A prominent application of 

Vainberg's theorem to systems of nonlinear differential equations leads to com- 

patibility conditions (potentialness conditions) whose validity allows the dif- 

ferential equations at hand to be the Euler-Lagrange equations of a suitable 

functional [2-4]. It is commonly believed that the existence of a variational 

formulation, with a local-in-time Lagrangian, is peculiar to conservative sys- 

tems. While it is usually so, there seems not to be a general argument ruling 

out the possibility of variational formulations for dissipative systems. It is 

the aim of this note to investigate this problem in connection with some ma- 

terials which are currently viewed as dissipative bodies. Specifically, we look 

at materials of the Kelvin-Voigt-type for which the stress tensor is expressed 

through a nonlinear function of the deformation gradient, the velocity gradient, 

and also of the space and time variables. Then the potentialness conditions are 

applied so as to derive the most general form of constitutive functions admit- 

ting a variational formulation. Finally, on requiring that the stress function 

be objective and satisfy the standard symmetry conditions, we determine the 
Lagrangian density. 

Potentialness Conditions 

In order to describe finite motions we label each particle of the dissipative 

solid under consideration by its position X in a suitable reference configura- 

tion; so x (X,t) is the position of the particle X at time t, i =x,t= ax (x,t)/at 

is the velocity, F = ax (x,t)/ax is the deformation gradient. 

Owing to the conservation of mass, the mass density p is determined through the 
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motion by p det F = p~X), P0 being the reference mass density. On accounting 

for the stress of the body through the first Piola-Kirchhoff stress tensor S, 

the momentum balance reads 

p0 ~ = DivS +p0 b (I) 

where b =b(X,t) is the body force. As we are not interested in the temperature 

field we disregard the energy balance which, though, would lead to formidable 

difficulties in finding a genuine variational principle. 

Our problem is to ascertain whether and how possible constitutive functions for 

the stress tensor S allow the balance equation (I) to arise from a variational 

principle. To accomplish this in a systematic way we need a proper mathematical 

tool. Now, on appealing to the general theory developed in [4] we state that a 

third-order system of the form 

fr(u~, u~,~, u~,~B , u~,~y, y~) = o, r,~= 1 ..... m, ~,~,y = 1 ..... n, (2) 

in the unknown functions u~ = u~(y~), admits a variational formulation if and 

only if the potentialness conditions 

~fr _ ~f~ (3) 

~u~,~B~ ~UF,~B¥ ' 

~fF = ~f~ 3 ( ~f-----i-~ ),Y ' (4) 

aun,~ ~Ur,~s ~Ur,~n Y 
~fr ~f~ ~f~ ~f~ 

- +2( ),B - 3( ),BY , (5) 
au~,a aUr, ~ ~UF,aB ~Ur,~s~ 
Sfr _ ~f~ (~u~f~,)'~ + ~f~ - (~ ~f~ ')'~Sy (6) 

~u~ ~u r r ( ~ r , ~ ) ' ~ 8  °Ur,~SY 

a r e  s a t i s f i e d ;  t h e  s u m m a t i o n  c o n v e n t i o n  i s  i n  f o r c e  a n d  a c o m m a  f o l l o w e d  b y  a 

greek letter, ~ say, denotes differentiation with respect to y~, ~ = i ..... n. In 

this note the conditions (3)-(6) are applied in connection with the nonlinear 

Kelvin-Voigt model which, if the explicit dependence on X and t is allowed, 

is characterized by the response function 

S = S ( F  , # , X ,  t )  

Restrictions on the Nonlinear Kelvin-Voigt Model 

Henceforth we use Cartesian tensor notation, the convention that capital in- 

dices refer to material coordinates and lower case indices to present coordi- 

nates, and the convention that round (square) brackets, enclosing a pair of 
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capital (or lower case) indices, denote symmetrization (skew-symmetrization). 

So as to apply (3)-(6) to the balance equation (I) we let F,~= 1,2,3 and ~,B,y = 

=1,2,3,4; then we set u i=x i (i= 1,2,3), YM =xM (M= 1,2,3), ~ = t. 

Before commencing the investigation of (I) we observe that some care is re- 

quired in dealing with derivatives involving symmetric quantities; this problem 

occurs here because of the dependence on F. To avoid pitfalls we adopt the rule 

that derivatives are evaluated through the expression of differentials. For ex- 

ample, dSiM= (~SiM/~xp,a8) dxp,~8 + ... the dots denoting terms concerning other 

independent variables. If e may take the values 1,2,3 while 8 = 4 or viceversa 

we have dSiM= 2(~SiM/~Xp,Qt)dXp,Qt + ... because Xp,Qt=Xp,tQ. As a conse- 

quence we get SiM,R = 2(~SiM/~Xp,Qt) Xp,QR t + ... whence 

~Si(M 
SiM, M = 2 Xp,QM t + ... 

~Xp,Q)t 

Accordingly the balance equation (I) may be written as 

~SiM Ei:= 00xi,tt - ~Si(M Xp,QM - 2 ~Si(M Xp,QM t 00bi = 0 . (7) 
~Xp,Q) ~xp,Q) t ~x M 

To ascertain whether (7) may admit a variational formulation we begin by de- 

riving some restrictions placed by (3) and (4). Now, in view of (7), 

~E i = 2 ~Si( M ; 

~Xp,QM t 3 ~Xp,Q) t 

this is so because Xp,QM t = Xp,QtM= Xp,tQ M and then 

dE i = ~Ei ~E i 
~Xp,e8 Y dxp,~Sy + ... = 3 dXp,QM t + .... 

~xp,QMt 

On the other hand we have 

~Ei = ~ , ~SiM 
~Xp,Qt ~xp,Qt SiM'M = -[~x--~,QtJ,M 

and hence 

~Ei 3" ~Ei " " ~Sio - 
= [ ~ ) , M  ~xp,Qt (~xp,QMt)'M ~Xp,Mt 

Accordingly the conditions (3), (4) imply that 

~Sp(M ~Si(M + = 0 , (8) 
~Xp,Q)t ~Xi,Q)t 

(~siM + ~s~),M= 0 . (9) 
8Xp,Qt 8Xi,Mt 

The integration of (9) yields at once 

~SiM ~SpQ 
+ = KipMQ (i0) 

~Xp,Qt ~Xi,Mt 

where KipMQ = KpiQM is an arbitrary function on X,t and, obviously, KipMQ,M = 0. 

Comparison with (8) gives Kip(MQ) = 0 and then KipMQ = K[ip][MQ]. Therefore 
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~ip][MQ]'M: 0; hence there exists a tensor function ~ip = ~[ip] such that 

KipMQ= SMQR ~ip,R 

eMQR being the Levi-Civita symbol. Look now at (10); the homogeneous counter- 

part is a Killing equation ([5] , §84), namely 3SiM/$Xp, Q + ~SpQ/3Xi, M : O. 

Then the general solution to (10) is 

SiM = °iM + AiMpQ Xp,Qt + eMQR Yip,R Xp,Qt (ii) 

where OiM = 0i~F , X , t) and AiMpO :-ApOiM. In principle, AiMpQ may depend on F, 

besides on X and t; however, so as to arrive at definite results, we assume that 

AiMpQ is independent of F. 

We have now to exploit the condition (5) and also (4) in connection with ~,~ = 

=1,2,3. Observe that 

SEi _ D 8SiM 
~Xp,Q ~Xp,Q SiM'M = - (~x--~,O)'M ' 

~E____i_i ~Si (M + 2 ( ~ ~ ), 
~E~ - 3(~Xp,QMt)'t = - ~Xp,Q) ~Xp,Q) t t , SXp,QM 

~Ei + 2 ~Ei " ~Ei ~Ei 8SiQ 
~Xp,Q (~),M + 2 (~x-~,Qt),t - 6 (~-~p%Mt),Mt = [- + 2(~ i ~Xp, M p~Mt )'t]'M" 

Therefore the conditions (4), (5) yield 

3Si(M - 8Sp(M + 2( ZSp(M ),t = 0 (12) 
~Xp,Q) ~Xi,Q) 3Xi,Q)t ' 

~SiM 3SpQ 3S~Q_ 
+ 2( ),t = HipMO (13) 

3Xp,Q 3xi, M ~Xi,Mt 

where HipMQ is an arbitrary function on X , t such that HipMQ, M = 0. Comparison 

of (12) and (13) provides HipMQ = Hip[MQ] . Substitution of (ii) into (13) gives 

~OiM ~OpQ 
~Xp,Q ~xi, M - AiMpQ't + EMQR ~ip,Rt = HipMQ " (14) 

On interchanging the pairs iM , pQ and adding the two equations we obtain 

H[ip][MQ] = eMQR ~ip,Rt , whence H[ip][MQ], M = 0. As a consequence we have 

H(ip)[MQ],M = 0 . (15) 

Consequently there exists a symmetric tensor function ~ip= %(ip) on X , t such 

that H(ip)[MQ] = eMQR ¢ip,R - Upon substitution, (14) becomes 

~°iM _ ~°DQ 
~Xp,Q 3xi, M = AiMpQ't + SMQR ¢ip,R • 

Thus there exists a scalar function E on F , X , t such that 

~ 1 1 
+ ~AiMpQ,t Xp,Q + ~SMQ R %ip'R Xp,Q . 

°iM ~Xi,M 

Accordingly we arrive at the expression 
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1 1 
~Z + ~AiMpQ,t Xp,Q + ~eMQR ~ip,R Xp,Q 

SiM - ~xi, M 

+ AiMpQ Xp,Qt + eMQR ~ip,R Xp,Qt (16) 

for the stress S. As the last step, upon a straightforward calculation we find 

that the function (16) satisfies identically the condition (6). 

Observe that the above analysis does not involve the term P0 xi,tt because it 

gives rise to identities only. 

Objectivity and SymmetryConditions 

The balance equation (i), with the stress S as expressed by (16), admits a vari- 

ational formulation. However, before determining the corresponding Lagrangian 

density, we observe that the expression (16) reduces severely if $ is required 

to be objective [6] and the Cauchy stress to be symmetric, namely 

SiM xj, M = SjM xi, M . (17) 

Of course, the scalar function Z is objective provided that it depends on F 

through C = FYF. Accordingly, subsequent differentiations of (17) with respect 

to Xh,Nt and Xk, R , and appeal to the symmetry properties of AiMpQ and ~ip lead 

to the results 

AiMpQ = 0 , eMQR ~ip,R = 0 . 

Next, subsequent differentiations of (17) with respect to Xh, N and Xk, R provide 

CMQR #ip,R Xp,Q = 0 . 

As a consequence, (16) reduces to 

SiM = - -  (18) 
~xi, M 

The La~ran~ian D ensit~ 

Now we move on to determine the Lagrangian density corresponding to (18). Ac- 

cording to the general theory [4], systems of the form (2) admitting a vari- 

ational formulation arise from the Lagrangian density 

L(u F) = (u~-Q~) f~f~(~F' uF'~' ~F'~ ) d~ (19) 

where Q~ is a fixed function and ~ = Q~ + ~ (u~- Q~). Without any loss of gener- 

ality we put Qi=xi(X); then (19) becomes 
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1 
L(x) = -~P0 (xi - xi)xi,tt - P0 (xi - xi)bi - ~ (x i - xi)SiM,M(X) d~ , 

the dependence on X, t being understood. Then, since 

(x i- Ri),M ~xi, M ~ ' 

an integration by parts yields, up to boundary terms (and up to a sign), the 

sought Lagrangian density 

1 
L(x) = ~p0~.~ - Z(F) + P0x.b (20) 

The Lagrangian density (20) tells us that the function Z plays the role of a 

potential energy. This feature is hardly surprising although usually, in con- 

tinuum mechanics, the prescription L = T - V only works for conservative particle 

-like systems. Indeed the structure of a particle-like system occurs just be- 

cause the use of Lagrangian coordinates preserves the similarity with a system 

of discrete particles. 

To sum up the results of this note we say that if the dissipative behaviour of 

a body is described through the Kelvin-Voigt model then the dependence on 

cannot be cast in a variational formulation. So the question arises about 

whether more involved models, like, for example, that of Zener ([7] , §16), al- 

lows a variational formulation to account for the dissipation; this investiga- 

tion is under way. 
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