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Abstract-The equations governing the behaviour of an eiastic dielectric in the quasi-static 
approximationareanafysed inconnection with theinverseproblemofthecalculusofvariations. First, 
through compatibility with the potential conditions, the most general constitutive equations are 
derived which allow the model to admit a variational formulation. Then the explicit form of the 
Lagrangian density is determined. Consistent with the adoption of Lagrangian coordinates, the 
Lagrangian density ascribes to the dielectric the structure of a particle-like system. 

1. INTRODUCTION 

There are several aspects which motivate the wide literature ofelastic dielectrics (see, e.g., [l ] 

and references therein). Within the electrodynamics of deformable media, the elastic 
dielectric constitutes a very simple model in which magnetization is disregarded; that is why 
many objections against some methods employed for the description of the electromagnetic 
interaction do not apply to the elastic dielectric scheme. On the other hand the simplicity of 
the model does not prevent it from describing various interesting phenomena based on piezo- 
electric, photo-elastic, and electro-optical properties [2]. Mathematically, such phenomena 
are modelled by non-linear constitutive functions, which is consistent with the general feature 
that, although Maxwell’s equations for the electromagnetic field in vacuum are linear, in 
material media they are not. This intrinsic non-linearity of the elastic dielectric model 
indicates that it is more appropriate to have recourse to methods of non-linear analysis 
instead of adopting linearised approximations. In our opinion new analytical methods and 
computation procedures are likely to be gained if the equations modelling the elastic 
dielectric are shown to arise from a genuine variational formulation in the sense that they are 
the Euler-Lagrange equations of a proper functional. 

To ascertain whcthcr a given set of differential equations admits a variational formulation 
is a topic pertaining to the inverse problem of the calculus of variations. As is well known, a 
general formal answer to the inverse problem is delivered by a theorem of Vainberg [3 3; a 
paper of ours [43 exhibits detailed conditions (potentialness conditions) ensuring the 
existence of a variational principle. Such potentialness conditions are sufficient for answering 
completely the inverse problem if, as we do here, we are interested in the differential equations 
but not in the boundary conditions (formal differential operators; see, e.g., [5]). 

In this paper we prove that the equations for the elastic dielectric in the quasi-static 
approximation, described through Lagrangian coordinates, admit a genuine variational 
formulation. Our procedure is as follows. As a starting point we let the stress tensor and the 
electric dispIacement be junctions of’ the deformation gradient and the electric field. Next 
these response functions are required to satisfy the potentiaIness conditions; so we arrive at 
the most general form of the response functions compatible with the existence of a variational 
formulation. The final step is merely the evaluation of the Lagrangian density. Consistently 
with the adoption of Lagrangian coordinates, the Lagrangian density turns out to have the 
structure typical of particle-like systems. 

2. BALANCE EQUATIONS IN THE QUASI-STATIC APPROXIMATIONS 

The complete set of equations describing the electrodynamics of deformable bodies of 
finite extent has been investigated extensively (see, e.g., [l, 6-8 ] and references therein). 
Notwithstanding this, it seems that there is no universal agreement about the detailed form of 
the terms entering the momentum balance and the energy balance. On the other hand, a 
variational rormulation for the electrodynamics of deformable bodies appears to be a 
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formidable task. This suggests that we start with a simpler framework like that of elastic 
dielectrics within the quasi-static approximation where the magnetization is neglected as well 
as the time rate of change of magnetic induction and of electric ‘displacement. 

With the purpose of describing the finite motion of the elastic dielectric we label each 
particle of the body by its position X in a suitable reference configuration; so x(X, t) is the 
position of the particle X at time t, x = 8x(X, t)/dt is the velocity, F = Grad x(X, t) is the 
deformation gradient, the operator Grad = 8/8X denoting the gradient with respect to 
material coordinates. Owing to the conservation of mass, the mass density p is determined 
through the motion by 

where J = det F and p. is the mass density in the reference configuration. In connection with 
a Lagrangian description it is convenient to consider the reference measures d and 2 of the 
electric field E and the electric displacement D [1,9], namely 

Q = FE, 9 = JF-‘D, 

the direct tensor notation being used as usual; the magnetic quantities sl”, &? are irrelevant in 
the quasi-static approximation. Analogously, the stress of the body is conveniently described 
through the first Piola-Kirchhoff stress tensor S. These fields enter the pertinent balance 
equations in the form 

pof = DivS + Pab, 

Div D = pO, 

Curl& = 0, (2.1) 

where b is the body force and p. is the (reference) charge density. Owing to the condition 
(2.1), the electric field d is potential; hence there exists a scalar function Q, which allows (2.1 )3 
to be replaced with 

8 = -Grad&. (2.2) 

It is worth remarking that the system of equations (2.1) does not involve the balance of 
energy whose form, though, is not agreed upon [ 13. Physically, disregarding the baiance of 
energy means that the temperature field is not considered. Besides being motivated by 
simplicity reasons, this neglect is related to conceptual difficulties in finding a variational 
principle from which the entire system of equations may be derived. 

We have now to characterise the nature of the body under consideration through the 
introduction of a suitable set of constitutive equations. As our attention is confined to elastic 
dielectrics, we assume that the response functions S and &B depend on the deformation 
gradient F, the electric field &‘, and, possibly, on the independent variables X, t; meanwhile we 
regard b, pa, and p0 as assigned functions of X and t, Then, in view of (2.2), we are led to 
account for the behaviour of the dielectric via the system of equations 

peji - Div S(Grad x, Grad #, X, t) - pob(X, t) = 0, 

Div D (Grad x, Grad 4, X, t) - pe(X, t) = 0, (2.3) 

in the unknown functions x(X, t), gb(X, t). 

3. CONDITIONS FOR SAND 94 TO ALLOW A VARIATIONAL FORMULATION 

On the basis of the general theory developed in [4] we assert that a second order system of 
the form 

fr(u*,un..,un,ba,Y,)=O,r,ir= 1 ,...,w=,P= I,...,% (3.1) 
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in the unknown functions un = u&~), admits a variational formulation if and only if 

(3.2) 

(3.3) 

$-@-&- ($-)>+=~-;[-& (~),~I,*; (3.4) 

the summation convention is in force and a comma followed by a Greek letter, tf say, denotes 
differentiation with respect to )b!, a = 1, _. . , n. In the particular case when the functions Jr 
depend on the derivatives uoa., unrg but not on the values un, namely &,@a, = 0, then an 
immediate comparison between (3.3) and (3.4) yields 

[E - ($--)*IJ = 0. (3.5) 

Return now to the system (2.3) and observe that it may be written as 

(3.6) 

QD: = i- F~,QM f 2 - PO =o; 
' .Q) M 

we use Cartesian tensor notation, the convention that capital indices refer to coordinates and 
lower case indices to present coordinates of material points, and the convention that round 
(square) brackets, enclosing a pair ofindices, denote symmetrization (skew-symmetrization). 
Letui=x-i(i=1,2,3),Uq=S6r,J;==i(i=1,2,3),lk=Q?,andYnr=X~((M=1,2,3),1.4=t; 
the second order system (3.6) admits a variational formulation if and only if there exist 
constitutive functions S,B making the conditions (3.2)-(3.4) identicahy satisfied. In fact, 
because xi and 10 are independent of xi and 4, the condition (3.4) reduces to the simpler 
condition (3.5). 

Before commencing the detailed anatysis of (3.2)-(3.4) in connection with the system (3.6) 
we point out that the identity 

(3.7) 

holds for any vector function h which depends on u r,= and X, t (and, possibly also on higher 
order derivatives). 

The analysis begins with the case I-, R = 1,2,3. Observe first that 

aXi aSitM 

-=-axp,a,* %.QM 

and that, in view of the identity (3.7) for h,,, = SIM, S2,,,, &,, 

Therefore we obtain 

& (&)# = ($?$-&. 
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Then, as a consequence of (3.2) and {3.3), we find that 

as i(M as,w _ 0 ---_ 

ax P.Q) axi.Q, ’ 

It is a simple matter to see that the integration of (3.9) yields 

(3.8) 

(3.9) 

(3.10) 

where $ip = $,i,, is an arbitrary tensor function of X, r and EMQR is the Levi-Civita symbol. 
Addition of (3.8) and (3.10) gives 

a&M as,, - - - = 2&hfQR$ip,R - 
a~~,Q 3Xi.M 

This implies the existence of a scalar function 2 = E:(Gradx, Grad #, X, t) such that 

+ '%QR&p,&.Q. (3.11) 

It remains now to ascertain whether or not the conditions (3.5), (3.8), (3.9)-and (3.10)- 
place further restrictions on G and 3/i,, In fact, direct substitution shows that the function 
(3.11) satisfies identically such conditions. 

It is worth remarking that the above analysis does not involve the term p,jt,, appearing in 
xr, because it gives rise to identities onfy. 

Let now r = Q = 4. A procedure similar to the previous one allows us to find that the 
compatibility of @ with (3.21, (3.3) and (3.5) implies that the function 5? is expressed as 

(3.12) 

where A = A(Grad x, Grad #, X, e) and 5 = E(X, t) are arbitrary scalar functions. 
As the last step we have to examine the case r = 1,2,3,0 = 4 (and vice versa). Since we 

know the expressions (3.1 I), (3.12) for the functions S, 9, our task consists in determining 
further possible restrictions on C, $ip, A, Z. A straightforward exploitation of (3.2), (3.3) and 
(3.5) leads to the relationship 

where d = CfGrad @? X, t)_ L = L(Grad x, X, f), Oi = 0,(X, ff are arbitrary functions on their 
arguments. 

In connection with o and 1 it is of interest to point out that the transformation E -, E + (7, 
A -+ A + 1, leaving Sand 5@ unaffected, may be viewed as a gauge transformation. So, setting 
tr = 0, J, = 0 amounts to choosing a particular gauge. 

4, THE LAGRANGIAN DENSITY 

Since the functions (3.11) and (3.12), together with the restriction (3.13), make equations 
(3.6) meet the potentialness conditions (3.23-(3.43 we are now in a position to determine the 
corresponding variationa formulation. 

According to the general theory, systems of the form (3.1) admitting a variational 
formulation arise from the Lagrangian density f43 
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(4.1) 

where tin is a fixed function and t.Zo = rio + < (uo - tie); henceforth the explicit dependence 
on X, t is understood. In the present case, without any loss of generality, we put tii = &(Xj 
(i = 1,2,3), ti4 = 0; then the Lagrangian density (4.1) may be written in the form 

L(Xs $1 = J’ [(Xi - ii)Xi(% 6) + #@(% 611 dt 
0 

whence, because of (3.6), 

+ 
J 
’ L~~M.M(% 6) - (xi - siPiM.M(% 6)ldt. 

0 
(4.2) 

It is advantageous to express the quantities S and 9’ in terms of the scalar function Z; 
indeed, in view of (3.11)-(3.13), upon choosing the gauge r~ = 0, L = 0 we have 

SiM = E + &hfQR$ip.Rxp,Qv 

1.M 

ax -- 
%= a$,, + &MQR(@i.Rxi,Q + %R4rQ)* 

Hence it follows that 

(4.3) 

(4.4) 

Observe that, as always, the addition of material divergences and of material time 
derivatives to a Lagrangian density leaves the Euler-Lagrange equations unchanged. 
Accordingly, substitution of (4.4) into (4.2) allows us to write 

Finally, because 

on disregarding an inessential material divergence, we arrive at 

L(x, rJ%) = got * i - 2=(Grad x, Grad 9) + p,b -x + po& (4.5) 

It is of interest to note that, according to the Lagrangian density (4.5), the function Z plays 
the role of (total) potential energy. This feature is hardly surprising although usually, in 
continuum mechanics, the prescription L = T - V only works for conservative particle-like 
systems. Indeed, the structure of a particle-like system occurs just because the use of 
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Lagrangian coordinates preserves the similarity with a system of discrete particles. This 
assertion is substantiated by the variational formulation for the Lagrangian description of 
fluid dynamics [4] especially when compared with that for the Eulerian description [IO]. In 
this regard we mention that the conceptual relevance of the Lagrangian description, vs the 
Eulerian one, in conjunction with Hamilton’s principle is investigated in [l 1 1. 

5. CONCLUDING REMARKS 

The wide attention devoted to the thermodynamics of polarizable media motivates a brief 
comparison with the constitutive equations (4.3). At least in the case of the quasi-static 
approximation for elastic dielectrics, the restrictions placed by the second law of 
thermodynamics compel S and 9 to be given by a potential function, E say, such that [l, 121 

a& 
SiM = POG’ 

a& 
.caM = -po-. w,, (5.1) 

Now, it is apparent that the equations (4.3) are less restrictive than (5.1) in that they allow S 
and 9 to be affected by the additive terms 

8% = E~QRtiip,Rxp,Q, 9C = &YQR(@i,Rxi,Q + n~R+Q). 

To our knowledge these subtle terms have not yet been exhibited in any variational or 
thermodynamic approach. This should come as no surprise as long as S* and 9* do not enter 
the balance equations, because 

Sh,, = 0, ka;t;,M = 0, 

nor do they enter the expression (4.5) for the Lagrangian density. Accordingly, they may 
represent, for example, a uniform stress due to external loads on the boundary and a uniform 
electric displacement due to a superimposed electric field. 
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: R&u& 

On analyse les gquations re”gissant le comportement 
d’un di&lectrique Glastique dans l’approximation quasi 
statique en liaison avec le probleme inverse du calcul des 
variations. O’abord, par compatlbilit; avec les conditions 
d’existence de potentiel, on stablit les Equations fonda- 
menteles les plus g&&ales qui permettent au mod;le 
d’accepter une formulation varietionnelle. Ensuite on 
d;terml?e la forms explicite de la densit; du Lagrangien. 
Confor?enent a l’adoption des coordo@es de Lagrange, la 
densite du Lagrangien attribue au dielectrique la m&w 
structure qu’un syst&ne de particules. 

Zusammenfassung: 

Die da6 Verhalten eines elastischen Dielektrikums heschreiben- 
den Gleichungen werden in einer quasi-statischen Annaeherung 
in Verbindung mit dem umgekehrten Problem der Variationsre- 
chnwg untersucht. Zuerst werden durch die Vertraeglichkeit 
mit den Potentialbedingungen die Bedingungsgleichungen in 
allgemeinster Form hergeleitet, wodurch eine Variationsform- 
ulierung in das Model1 eingefuehrt werden kann. Dann wird die 
explizite Form der Lagrangschen Dichte bestimmt. Folgerichtig 
mit der Einfuehrung Lagrangscher Koordinaten schreibt die 
Lagrangsche Dichte dem Dielektrikum die Struktus eines 
Partikelsystems su. 
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