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Abstract 

The representations of the Riemann and the Weyl tensors of a four-dimensional Riemannian 
manifold through covariant derivatives of third-order potentials are examined in detail. The 
Weyl tensor always admits a completely general representation whereas the Riemann 
tensor does not. Nevertheless there exists a class of Riemannian manifolds whose Riemann 
tensors may be calculated in terms of potentials; in this connection, specific examples are 
exhibited explicitly. The possibility of introducing gauges on the potentials is reexamined in 
connection with the previous result. New properties of the representations are also discussed. 

w Introduction 

A more fundamental  understanding of  the geometric character of  the gravita- 
tional theory has underlined the crucial role of  the Riemann and the Weyl 
tensors. Gravitational radiation, singularity theory,  geodesic deviation as a tool 
for experimental  tests, to ment ion only a few, are topics which witness ade- 
quately the importance of  the Riemann and the Weyl tensors in the realm of  
gravity. In turn, a deep knowledge of  geometric aspects concerning the Riemann 
and the Weyl tensors provides a powerful and helpful insight into the modeling 
and the interpretat ion of  the physical reality. 

In accordance with the previous considerations, almost 20 years ago Lanczos 
[1] realized that  the purely algebraic approach to the splitting of  the Riemann 
tensor indicated by Einstein in [2] was unfortunately insufficient for "a true 

1 This work was carried out under the auspices of the National Group for Mathematical 
Physics of C.N.R. 
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understanding of the structure of a four-dimensional Riemannian manifold." 
Meanwhile he looked at the problem from a novel viewpoint. The striking result 
of Lanczos' analysis was that the Weyl tensor Caaca of any four-dimensional 
Riemannian manifold is generated, in a differential way, by a third-order tensor 
Hab c satisfying the symmetry properties 

Habe = HIab] e, HIabc] = 0 (1) 

where, as usual, square brackets indicate antisymmetrization. Precisely, the dif- 
ferential link between Caeca and Hab c is [ 1 ] 

Cabc d = Habe;d _ Habcl; c + Hccla; b _ Hcdb;a _ 1 [gac(Hljcl + Hdb ) 

- gaa(Hbc +Hcb)  + gbd(Hac + Hca) - gbc(Had + Hda)] 

+ 2 Hefe;f(gaegbd _ gadgbc), (2) 

- -  e _ H  e where H ~  - H b d;e b e;a, while gab denotes the metric tensor and a semi- 
colon stands for the corresponding Riemannian covariant derivative. Actually 
Lanczos' result, completely equivalent to (2), follows from (2) by imposing the 
algebraic gauge Hat, b = 0 [1] (cf. also Section 5). 

The decomposition (2) was used by Avez [3] in order to characterize a 
special class of Einstein spaces while many years later, and precisely in 1975, 
Taub [4] developed the spinorial counterpart of Lanczos' work. Also, more 
recently, in an attempt to generalize Lanczos' viewpoint, Brinis Udeschini [5] 
argued that not only the Weyl tensor Cabea but also the full Riemann tensor 
Rabcd could be derived from a potential Habe, satisfying (1), through the 
formula 

Rabca = Babe; d - Haba; c + Heda; b - Hedb; a (3) 

Subsequently the same author elaborated the spinorial version of her result [6] 
and then drew the consequences of (3) in a number of distinguished applications 
[7, 81. 

In our opinion, the significant results already achieved by means of the po- 
tential approach to the structure of the Riemann and Weyl tensors call for 
further investigation since we believe that the existence of a solution to either 
(2) or (3) is still to be proved. Precisely, what is proved in [1] is that equation 
(2) is the Euler-Lagrange equation of a suitable functional, while the deduction 
of (3), exhibited in [5], is based on the fact that there exists a functional of the 
field Hab c whose Euler-Lagrange equations take the form of the Bianchi identi- 
ties for the tensor Rabea built up according to (3). Nevertheless no rigorous 
proof that the equations so obtained are consistent is presented. On the other 
hand, there is no a priori reason for the consistency of the Euler-Lagrange equa- 
tions of a given functional. A nontrivial example confirming this assertion may 
be found, e.g., in [9] where it is proved that a variational principle for gravity 
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and matter in which metric and connection can be varied independently of each 
other leads, in general, to inconsistent field equations. 

The aim of this paper is threefold. The primary aim is to decide unambigu- 
ously whether equations (2) and (3) admit a solution or not. To this end, in 
Section 2 we consider two problems, equivalent to (2) and (3), respectively, ob- 
tained by letting the Riemann and the Weyl tensors not obey the cyclic property. 
This allows us to avoid some algebraic troubles in the proof of the existence 
theorem presented in Section 3. The main result is that, whereas equation (2) 
always admits a solution, in general equation (3) does not. In addition, we are 
able to prove that the differential gauge on Hab e invoked by Lanczos in [ 1 ] can 
indeed be imposed not only in connection with equation (2), but also with re- 
spect to equation (3). Furthermore, the possible existence of solutions to (3) 
for very special choices of Raaca is discussed in Section 4 where a few vacuum 
gravitational fields are exhibited for which solutions to (3) are explicitly 
calculated. 

The second aim is to examine some general features of the representa- 
tions (2), (3). Precisely, with the purpose of gaining new information, Section 5 
is devoted to a detailed comparison between outstanding properties of (2) and 
the corresponding ones of (3). In so doing, besides deriving new results, we better 
realize the reciprocal role of(2)  and (3). In passing we also investigate the exis- 
tence problem for (2) and (3) in an n-dimensional Riemannian manifold, n 4: 4. 

A third, minor, aim is to emphasize, through a prominent application, the 
effectiveness of  Cartan's local criteria of integrability of  ideals of  exterior forms 
employed in Section 3.2 as a powerful tool for proving the main results of this 
paper. In this connection, it is worth pointing out that we use Cartan's local 
criteria in a noncovariant way; as a consequence, we are not able to derive ex- 
plicitly the integrability conditions for equation (3), which, on the other hand, 
appear to be rather involved. Such conditions, however, are implicitly contained 
in the proof of the theorem presented here which also provides a necessary and 
sufficient procedure to ascertain the existence of a solution to (3) for any given 
Raaca. A conjecture is then suggested that there exists a broad class of Riemann 
tensors admitting a third-order potential via (3). In any case, arriving at an exact 
solution to (2) or (3) is a very formidable task. 

As a last comment, we observe that the paper is so organized that the proof 
of the theorem-which is in fact rather technical-may be omitted without loss 
of mathematical continuity. 

w Two Equivalent Problems 

In discussing the existence of solutions to (2) or (3), some algebraic troubles 
arise in connection with the cyclic property ofRa~ca , Cabca, Habc. Thus we are 
led to disregard the cyclic property by looking at two slightly different-but 
equivalent-problems. 
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Precisely, let Nat, ca be a given tensor satisfying the symmetry relations 

Nabea = N[ab] [ca] = Ncaab (4) 

and define the trace-free part of Nabca according to the formula 

1 N 
Mabca = Nabca - ~ {gaeNtm} + - ~  {gacg~a} 

1 
= Nabca - l {gac (Nba ~ Ngba)} (5) 

where Nba = gaCNabca and N = gbaNba. In (5) the braces are a short-hand nota- 
tion for the following linear operation on the indices (abcd): 

((abed)} = (abed) - (bacd) - (abdc) +(baac) 

+ ( c d a b )  - ( c d b a )  - ( d c a b )  + ( d c b a )  

By analogy with (2), (3), we now introduce an unknown third-order tensor Talc, 
satisfying the symmetry condition 

through either the equation 

or the equation 

Tabc = T[able (6) 

Nabea = { Tabc ; a) (7) 

e e e e 
= Td b;e Tb e;d Td e;b)} 

+ 1 Tefe;f(gacgbd ) (8) 

It is important to emphasize that, although equation (8) can formally be derived 
from (7) via the definition (5), in the sequel we shall look at equations (7), (8) 
as being completely independent of each other. 

The reason why we are allowed to examine equations (7), (8), instead of (2), 
(3), is contained in the following: 

Lemma. The existence of a solution Tabc to equation (7) [(8)] is mathe- 
matically equivalent to the existence of a solution Habc to equation (3) [(2)]. 

To prove this lemma, observe first that the tensorsNabca and Tabc may 
uniquely be split as 

/x 

Nabca = gabed + ~rlabe d (9) 

Tat, c = 1"abc + ~labcd Qd (1 O) 

where ~Tabcd is the Levi-Civita symbol and 
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^ 1 1 Nabca = ~ (Na~ca + ~ Naacb + ~ Nacba), 

Qa ~ nabCa Tabc 

A 

NaIbcal = 0 

/x 

T[abc ] = 0 

379 

(11) 
A A 

Similarly, we may write Mabca = Mabcd + #rlaOcd, where MaDca ] = 0. Then, in 
view of the linearity of (7)-(11), it is a simple matter to verify that Tab c and 
A 

Nabea^satisfy equation (3) whenever Tabc and Nabca satisfy equation (7) and 
that Tab c and Mabca satisfy equation (2) whenever Tab c and Mabea satisfy equa- 
tion (8). Moreover, on account of (9), (10), antisymmetrization of (7) with 
respect to bcd yields 

e 
)~abcd = (~abee Q ; d} (12) 

whereby 

= Qe; e 

The same equation is arrived at also by starting from (8). Since equation (13) 
always admits a (local) solution, we conclude that the existence of solutions to 
(3) [(2)] is a consequence of the existence of solutions to (7) [(8)]. The con- 
verse of this statement is trivially true. 

As a preliminary check on the equations we are considering, let us observe 
that, owing to the symmetry properties of the tensors involved, the number of 
equations against the number of unknowns is as follows: 

21 equations, 24 unknowns 

20 equations, 20 unknowns 

11 equations, 24 unknowns 

10 equations, 20 unknowns 

(13) 

system (7): 

system (3): 

system (8): 

system (2): 

For a better understanding of the previous table, it should be borne in mind that 
the skew-symmetric part (13) of (7) or (8) is a single equation for four indepen- 
dent quantities. Moreover, it seems that a solution to equation (2) or (8) enjoys 
a great arbitrariness which could be eliminated by imposing suitable gauges. The 
algebraic and differential gauges introduced in the literature [1,5] will be ex- 
amined in the next sections. 

w The Existence Theorem 

3.1. Statement of  the Theorem. In the sequel we shall refer to generic con- 
ditions as the assumption that the field Naoca (and possibly Mabcd) is constrained 
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only to meet the algebraic symmetry properties (4) and no further a priori 
restriction. Also, in the subsequent analysis we shall suppose that the underlying 
manifold and the given data Nabca, or Mabca, are analytic; this hypothesis enables 
us to investigate the existence of a solution to (7) or (8) through the use of 
Cartan's local criteria of integrability of ideals of exterior forms (formal ap- 
proaches to Cartan's local criteria may be found, e.g., in [10, 11], while a more 
intuitive treatment is delivered in [12] ). Accordingly our conclusions have a 
local character only. 

The main results to emerge from this section are collected in the following. 

Theorem. Consider an analytic four-dimensional Riemannian manifold and 
let Nabca and Mabca be analytic tensor fields satisfying the symmetry properties 
(4) andMebee = 0. Then (i) under generic conditions there does not exist any 
local regular analytic solution to equation (7); (ii) for every choice of the field 
Mabca equation (8) always admits a local regular analytic solution; (iii) the sys- 
tem consisting of equation (8) and the differential gauge condition 

Tabe;e = 0 (14) 

always admits a local regular analytic solution. Analogously, whenever one local 
regular analytic solution to equation (7) exists, then the system (7), (14) too 
admits a local regular analytic solution. 

3.2. Proof o f  the Theorem. (i) The proof is based on a preliminary refor- 
mulation of the system of partial differential equations (7) in terms of exterior 
differential forms and on the use of Cartan's necessary and sufficient condition 
for involutiveness [10]. To this end, let us define the auxiliary quantities 

Zabca = ZIablcd := Tabc, d (15) 

where a comma denotes partial differentiation with respect to the local coordi- 
nates x a of the Riemannian manifold. The system (7) may thus be written ex- 
plicitly in the equivalent form 

Nabca - (Zabcd - Feaa Tebc - Feba Taec} = 0 ( 1 6 )  

while the definition of Zabca implies that 

dZab c - Zabce dx e = 0 (17) 

Consider now the array (x a, Tabc, Zabca) as the local coordinates of a formal 
124-dimensional (analytic) manifold ~. Accordingly, we shall look at equations 
(! 6), (17) as a system of exterior differential equations on ~11. In agreement with 
this viewpoint, the addition of the equations obtained by exterior differentiation 
of (16), (17), viz., 

Nabed ' f d x  f + ( ( F  earl ' f Teb c + Febd ,  / Taec) d x  1" _ dZabcd  

+ Fead dTebc + peba dTaec} = 0 (18) 

dZabce A d x  e = 0 (19) 
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leads to the system (16)- (19)  which is closed under exterior differentiation and 
has the same integral manifolds in ~ as the original system (16), (17) [10-12] .  
Obviously, every solution to the original system (7) singles out in ~ a four- 
dimensional integral manifold of  the system (16)- (19)  which is, by definition, 
invohitive with respect to x 1 , . . . ,  x 4 . It is the central point of  Cartan's ap- 
proach to partial differential equations that every four-dimensional integral 
manifold of  (16)-(19) ,  involutive with respect to x 1 . . . .  , x 4 - a n d  hence given 
locally in ~ by Tab c = Tabc(X 1 . . . .  , X4), Zabca = Zabca(x I , . . . , x4)- ident i f ies  
itself with a solution to (7). 

Our task is then to look for the existence of four-dimensional integral mani- 
folds of  (16) - (19)  which are involutive with respect to x 1 , . . . ,  x 4 . According 
to Cartan's theorem (see [10],  p. 91), the necessary and sufficient condition for 
an integral manifold to be involutive is that the reduced Cartan characters s~ 
coincide with the corresponding Cartan characters si, that is, s~ = si. In essence, 
the characters s i and s' i are ranks of  algebraic linear systems; such characters are 
to be evaluated through a step-by-step procedure which, in the present case, 
goes as follows. 

Choose a point P = (x a, Tabc, Zabca ) of N in such a way that equation (16) 
holds at e .  Letting X = x a ( o / O x  a) + Xabc(~/OTabc) + Xabca(~/3Zabca ) be an un- 
known vector belonging to the tangent space to ~ at P, we consider both the 
algebraic linear system [generated by the 1-forms (17), (18)] 

Xab c - Zabce x e  = 0  (20) 

Nabcd, f x f  + (([ 'ead,  f Tebc + Febd, f Taec) x f  - Xabcd 

+ FeadXebc + FebdXaec) = 0 (21) 

and the reduced linear system obtained from (20), (21) simply by omitting the 
terms containing the quantities X a. Then So and s0 are defined to be the rank of  
(20), (21) and of the reduced system corresponding to (20), (21), respectively. 
Consider now the further equation [generated by the 2-form (19)] 

x d  Y(co abcd - Ya(c,) Xabcd = 0 (22) 

where, for the present, o~ = 1 and Y(1) is a known vector solution to (20), (21). 
Then So + sl and So + s~ are the rank of  (20)- (22)  and of the reduced system 
corresponding to (20)- (22) ,  respectively. Let Y(2) be a solution to the system 
(20)- (22)  independent of  Y(1)- Then So + sl + s2 and sO + s~ § s~ are the rank 
of (20)- (22) ,  c~ = 1 ,2 ,  and of  the reduced system corresponding to (20)-(22) ,  
o~ = 1, 2, respectively. As a last step, we have to find the vector Y(3) as a solution 
of (20)- (22) ,  c~ = 1,2,  independent of  Y(1), Y(2); hence the construction pro- 
ceeds straightaway. It  is, however, worthwhile to remind the reader that at each 
step the vector Y(~) must be so chosen as to depend on the maximum number of  
independent parameters consistent with the system yielding Y(~): no further 
constraint on these parameters may be imposed in subsequent steps. 
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Let us draw the consequences of the procedure indicated above by looking 
explicitly at the evaluation of s: and s~. At this step we have at our disposal two 
independent vectors Y(1) and Y(2); by multiplying the reduced equation cor- 
responding to (21) by Ya(1 ) Yb(2 ) ye(1 ) Yd(2 ) we readily recognize that, on 
account of (20), (22), equation (21) reduces to an identity. On the other hand, 
when applied to the full system, the previous calculation leads to 

[Nat, ca, f X f + ((Fead, f Tebe + Feba, f Taee - FeaaZebef - FebdZaecf) x f ) ]  

�9 ya(1 ) Yb(2) Ye(1) Ya(2)+ 4(Y(1)abefyC(2) 

- Y(2)abef ye(1)) ya(1) Yb(2) X f  = 0 (23) 

which is a homogeneous linear equation for X a. Under generic conditions equa- 
tion (23) is not identically satisfied; as a consequence we have s~ < s2 or, more 
precisely, s2 = s~ + 1. The general result is therefore that, whereas under generic 
conditions the full system does not contain any internal identity, the reduced 
system contains as many internal identities as the number of independent 
fourth-order tensors meeting the symmetry properties (4) which can be 
formed by means of the three independent vectors Y(1), Y(2), Y(3). Since this 
number is six, we deduce that So + sl + s2 + s3 = s~ + s~ § s~ + s~ + 6. 

This discussion enables us to conclude that, under generic conditions, the 
system (16)-(19) does not admit any involutive regular integral manifold and 
hence equation (7) too does not admit any local regular analytic solution. 

(ii) The proof follows exactly along the same lines as that of part (i); con- 
sequently we only summarize the main steps. Introduce first the auxiliary vari- 
ables Zabcd via equation (15), then rewrite equation (8) as a system of exterior 
differential equations on ~1/and make it closed under exterior differentation. So 
we are in a position to calculate the Cartan characters s i and s~. As all steps are 
easily reproducible, it is sufficient to point out that the presence of the terms 
(gac(Tt, ed; e + Tdeb; e) in (8) now prevents the formation of the internal identi- 
ties plaguing the reduced system in part (i). Hence, in the present case, si = s~�9 
Accordingly we conclude that equation (8) always admits a local regular analytic 
solution�9 

(iii) With the aid of the definition (15), carry the first equation (14) over 
~ll to get 

gCd(Zabed - Fead Tebe - Febd Taee - Feed Tabe) = 0 (24) 

Next calculate its exterior derivative, namely, 

ged(dZabecl - Fead dTebc - Febd dTae e - Feed dTabe) + ged, f[(Zabcd 

- Fead Tebe - Fet, d Taec - Feed Tat, e) - ged(Fead, f Tebe 

+ Fet~d, fTaec + Fecd, fTa~,e)] dx f = 0 (25) 
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Finally consider the enlarged system consisting of equations ( 8 ) - o r  rather (8) 
and its closure in ~I-(24),  and (25). 

Now we apply Cartan's theorem. Everything goes as in part (ii) provided the 
enlarged system is algebraically consistent. It is easy to convince oneself that this 
is so. For, multiplication of (8) by gca results in an identity thereby showing that 
equations (24), (25) do not participate in the operation contained in (8). This 
feature stands in complete agreement with the heuristic reason for the validity of 
the gauge (14) given by Lanczos [1 ]. The conclusion is then that the enlarged 
system satisfies s i = s}, thus ensuring the existence of involutive integral mani- 
folds and, in turn, the existence of local regular analytic solutions to (8), (14). 

An analogous result holds in connection with the system (7), (14) provided 
the conditions for an involutive integral manifold to exist are satisfied, that is, 
when the data Nabcd are not generic. 

w Discussion 

According to the preceding theorem, under generic conditions equation 
(7) does not admit any solution; of course such a theorem does not prevent the 
existence of (nongeneric) tensors Nabca which can be expressed in terms of 
third-order tensor potentials Tabc via equation (7). Yet, when this is true, equa- 
tion (7) looks rather formidable to be solved. In this section we shall discuss a 
few particular examples which allow a solution of (7) to be found explicitly. 

To begin with, look at the flat space-time manifold and define the tensor 
Nabca through the relation 

N a b c  d = 1 (')'ad, bc + 7bc, acl - 7ac, bd - 7ha,  ac) (26) 

where Tab is an arbitrary second-order symmetric tensor. It is worth observing 
that (26) is the expression of the Riemann tensor in the linearized theory. In this 
instance it is known that a solution to (7) is [1,7] 

(27) 

This is a simple example of a tensor which is not the Riemann tensor of the un- 
derlying (flat) manifold and which nevertheless admits a tensor potential (fur- 
ther details on this example are given in [7] ). 

Consider now the case of a conformally flat manifold. Owing to the vanish- 
ing of the Weyl tensor, the Riemann tensor turns out to be expressed as [cf. 
equation (5)] 

Rabe d = 1 {gae(Rbd_ 1 Rgba)} (28) 
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I R thereby showing that the tensor Rbc 1 - -6 gt, d determines completely Rabcd 

(see, e.g., [13]). Then, on letting the metric tensor be given by 

gab = exp [2U(x 1 . . . . .  x4)] rlab, rlab = diag(1, 1, 1 , -1)  

we eventually arrive at [ 13 ] 

Rab - ~ Rgab = - 2 U  ab + 2 U a U  b - rlab U e U  'e (29) 

We now seek solutions to (3) of the form 

Habc = f,,agbc - f,,bgac (30) 

f = f ( x  1 , . . . , X4); as follows straightaway by substitution of  (30) into (2), 
such a solution does not alter the vanishing of the Weyl tensor. According to 
(28)-(30), equation (3) reduces to 

( - U  + 2 f ) , a  b + ( U -  4 f ) , a U  b + ( U -  4 f ) , a U ,  b - r lab(U- 4 f ) , e  U'e  = 0 (31) 

A solution to the previous system is obtained by letting 

r=�88 
hence (31) becomes 

whence 

Uab = 0 

U = ~a xa 

~k a being a vector constant with respect to r/at,. 
Furthermore, we present two exact conformally flat solutions of the Einstein 

field equations whose Riemann tensors may be derived from potentials. 
First, look at the most general conformally flat solution with pure radiation 

or electromagnetic null fields. In this instance the energy momentum tensor is 

Tab = aV2 (u ) u,,, u, b 

where U,a u'a = O, U;ab = 0, and the line element reads [13] 

ds 2 = dx  2 + dy 2 - 2 du d v -  �89 dp2(u)(x 2 + y 2 ) d u  2 

Seeking solutions of the form (30), with f =  f ( u ) ,  reduces (3) to 

- 4 f ,  uU,aU,b = C~2U,all,b 

thus the potential is given by (30), f ( u )  being a solution to 

4f, u = ~ 2  
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Second, we examine conformally flat perfect fluid solutions with state equa- 
tion p = -/a/3. The relevant energy momentum tensor is 

2 ~t 
Tab = 31~t, at, b - -~gab 

where/1 = g(t),  t,a t ' a  < 0, and t;ab = �89 t, ~ + gab), while the line ele- 
ment turns out to be a special case of the generalized Friedmann universes (see, 
e.g., [13], p. 370). As above, we find that solutions of the form (30) are al- 
lowed provided the function f ( t )  satisfies the equation 

3f, t +fO = 0 

As a final remark, we note in passing that the Ricci tensor rlabca of every 
Riemannian manifold can always be derived from a potential. Indeed equation 
(12) shows that rlabca is given in terms of the potential rlabcaQ a, where Qa is a 
solution to Qa;a = 1. 

w Comments and Conclusions 

We are now in a position to draw a detailed comparison between the two dif- 
ferential problems represented by (7) and (8). In particular, we shall indicate 
some properties which either have already been proved or are easily verified by 

direct computation. 
Consider first equation (8); we have the following results. 
(ax) For every assigned tensor Mabca equation (8) does always admit a 

solution. 
(a2) Every solution to (8) is determined to within the tensor Vagbc - Vbgac, 

V a being an arbitrary vector. This algebraic gauge has been used to make Tab b 

vanish [1, 5]. 
(aa) For every solution to (8) the skew-symmetric t e n s o r  Tabe;e may be 

fixed arbitrarily. This constitutes a differential gauge which in general cannot be 
expressed in a local form. However, it should be noted that, in the case of a 
manifold with constant curvature, every skew-symmetric tensor Cab yields the 
quantity ~ab;c which makes the right-hand side of (8) vanish identically and 
which may be viewed as the local counterpart of the aforementioned differential 
gauge. 

As to equation (7), the corresponding results are as follows. 
(bl )  Equation (7) may allow a solution for particular choices of the tensor 

Nabca; when this is the case, a solution to (8) may be found through the relation 
(5) [51. 

(b2) Whenever the Riemannian manifold admits a Killing vector ka, a pos- 
sible solution to (7) is determined to within the tensor kagbc - kbgac. 
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(b3) The same as (aa). As a further comment,  we strongly believe that it is 
just the presence of  such a general differential gauge-involving six degrees of  
f reedom-which is responsible for the six internal identities arising in the proof  
of  the theorem and leading to the generic nonexistence of  solutions to (7). 

We conclude this paper with two remarks. First, by the very nature of  the 
problem at hand, the vanishing of  Nba neither provides any significant simplifi- 
cation nor makes the six internal identities of  the theorem hold automatically. 
In the framework of  the general relativity this means that there may exist vacuum 
solutions of  the Einstein field equations whose Riemann tensors cannot be given 
the form (3). Needless to say that, when equation (3) has a solution, the con- 
clusions arrived at in [7, 8] yield relevant and outstanding insights into the 
geometric structure of  the Einstein field equations. 

Second, it seems worthwhile to analyze the problem of the existence of  a 
solution to (7) or (8) in an n-dimensional Riemannian manifold, with n not 
necessarily equal to four. As to equation (7) is follows directly from the proof 
of the theorem that only for n = 2 equation (7) always admits a solution whereas 
for n ~> 3 at least one internal identity appears thereby preventing the existence 
of a solution under generic conditions. Things are different for equation (8). In 
fact there arise algebraic incompatibilities only when the number of  independent 
equations becomes greater than the number of  independent unknowns. Now, in 
view of  their symmetry properties, Mabca has al = (n 4 - 2n 3 - n 2 - 6n)/8 and 
Tab c has a2 = (n 3 - n2)/2 algebraically independent components. It is readily 
recognized that oq < o~2 when n ~< 6 and that oq > a2 when n ~> 7. Accordingly, 
we conclude that, under generic conditions, equation (8) admits a solution if and 
only if n ~< 6. 
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