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SOMMARIO. Si esamina la compatibilit~ trail  principio di 

obiettivit~ ed equazioni costitutive affini per i tensori di 

stress elastici di Cauchy a Piola-Kirchhoff con stress residuo 

non nullo. Generalizzando risultati di Fosdick e Serrin si 

prova che il tensore di Cauchy pud essere soltanto un tensore 

costante, proporzionale al tensore identitY, mentre il tensore 

di Piola-Kirchhoff pud essere una funzione lineare del gra- 
diente di deformazione. Alle stesse conclusioni si perviene 

anche partendo dal funzionale della viscoelasticitd. Infine 

si mostra che, per materiali tipo Maxwell, le soluzioni di 

equazioni di evoluzione obiettive sono funzionali obiettivi. 

SUMMARY. The compatibility between the objectivity 

principle and affine constitutive equations for the elastic 

Cauchy and Piola-Kirchhoff stress tensors with non-zero 

residual stress is examined. It is found that the Cauchy 

stress is allowed to be only a constant tensor, proportional 

to the identity tensor, while the Piola-Kirchhoff stress may 

be a linear function on the deformation gradient thus general- 

izing previous results by Fosdick and Serrin. The same 

conclusions are arrived at also by starting from viscoelasticity. 

Finally, in the case of  Maxwell-like materials, the solutions 

to the objective evolution equations are shown to be 

objective functionals. 

1. INTRODUCTION. 

For  a constitutive theory to be a mathematical model 

representing a material behaviour in an acceptable way, 

a suitable set of general requirements must be satisfied 

[1, 2}. Among them, the axiom of  objectivity (or material 

frame-indifference) has been given much attention also 

because of many objections against objectivity as a principle. 

Moreover, attention has been focused on the axiom of  

objectivity so as to derive restrictions on the constitutive 

relations. In this regard, enlightening comments and valuable 

results may be found in [3 - 5]. 

Lately, Fosdick and Serrin [6] have investigated the 

consequences of  objectivity on the constitutive relations 

for elastic solids. Indeed, they have considered the question 

o f  linear elasticity with zero residual stress as being a theory 

or  nothing but an useful approximation. As a result, compa- 

tibility with objectivity has been shown to demand that the 
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response function should vanish; this provides a noticeable 

feature which weights in favour of  linear elasticity as being 

simply a useful approximation. 

The purpose o f  this paper is twofold. The first fold is to 

re-examine compatibility of  linear elasticity with objectivity 

when the residual stress is allowed to be non-zero. To this 

end, section 2 summarizes some properties concerning 

objective functions and exhibits assumptions about Cauchy 

stress and Piola-Kirchhoff stress as affine functions on the 

displacement gradient. Then, in section 3, restrictions placed 

by objectivity on the response functions are derived. Specifi- 

cally, it turns out  that the Cauchy stress must be proportional 

to the identity tensor while the Piola-Kirchhoff stress must 

be a linear function on the deformation gradient. So the 

objective relation between the Piola-Kirclihoff stress and the 

deformation gradient involves a symmetric constant tensor 

and then anisotropies o f  the body are described through six 

elastic constants, at the most. Moreover it is shown that the 

same conclusions are obtained even though one starts from 

affine viscoelasticity. All these results generalize the corre- 

sponding ones obtained by Foskick and Serrin in the case 

of  zero residual stress. 

Motivated by the view of  viscoelasticity as a model arising 

from a differential equation accounting for relaxation 

(Maxwell's material), the second fold is to give new insights 

into the topic of  objective functionals. In this regard, in 

section 4 we consider the most general objective form of 

a Maxwell-like differential equation and we show, by a direct 

procedure, that the functional so determined is objective. 

To our mind the connection between objective functionals 

and evolution equations involving objective time derivatives, 

proved here in a particular case, could be an interesting 

subject for future investigations. 

2. AFFINE CONSTITUTIVE RELATIONS. 

Henceforth we describe the deformation of  the body 

under consideration through the deformation gradient 

tensor F, or the displacement gradient tensor H, relative 

to some fixed reference configuration o f  the body; letting 

l be the identity tensor, F and H are related by F = H + L 

Both H and F are elements of  the space L of  all linear trans- 

formations o f  a three dimensional vector space into itself. 

So as to avoid the vanishing of  the local volume elements 

or mirror reflections of  the reference configuration, we 

require that H E D : = { H E L ,  d e t ( l + H ) > 0 } .  Indeed, 
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it is enough to assume that H ~ D ' ,  D '  being any open con- 

nected subset of  D which contains the origin 0. Physically 

this corresponds to look only at displacement gradients 

which can be achieved by actual deformations from the 

undistorted state. At any particle X and time t the elastic 

response of  the body is expressed via the Cauchy stress T 

as 

T = T[H] 

or via the (first) Piola-Kirchhoff stress tensor S=[ de tF  I TF-  ] T 

as 

S = s in ]  

the functions T and S being defined on D' .  Denoting the set 

of  all proper orthogonal tensors by O + , for any time depen- 

dent tensor Q : R -~ d~ + the change o f  frame [ 1 ] 

x ~ Q x + c  (2.1) 

causes the change of  the deformation gradient F ~ QF and 

then, under (2.1), the displacement gradient transforms 

as H ~ Q - I + QH. Thus, according to the axiom of  objecti- 

vity, the functions "r,S must satisfy the conditions 

T[Q --  ! + QH] = Q'F[H]Q T, (2.2) 

S[Q -- 1 + QH] = QS[H], (2.3) 

for any tensor H E D '  and any (time dependent) tensor 

Q E(_0 + such that Q - 1 + QH E D ' .  

In this paper we confine our attention to affine functions 

"i', S, namely 

J'[H] = A + B[H], (2.4) 

S[H] = M + N[H], (2.5) 

where A, M are constant tensors and B, N are linear functions 

on D ' ;  of  course B[0] = 0, N[0] = 0. In next section we 

exploit the conditions (2.2) - (2.5) so as to derive restrictions 

placed by objectivity. To this end, it is convenient to have 

recourse to the following 

THEOREM 1 (Fosdick and Serrin [6]) . / . f  the linear tensor 

func t ion  f E H o m  (L, L) is such that f [ Q - l ]  = 0  f o r  any 

tensor Q 6 G + , Q - 1 6 D ' ,  then f vanishes identically on L. 

It is a trivial matter to write the counterparts of  (2 .2)-  

- (2.5) in the case of  response functionals. For  instance, letting 

: = { H(.) : R -~ L, det [1 + H(.)] > 0}, 

the counterpart of  (2.5) is 
(2.6) 

S(t) = b°t= [H(.)] = M + JVt= [H(.)], H(-) E ~ .,,V t** [0(.)] =0. 

In connecion with functionals on , f f  we have the following 

THEOREM 2 (Fosdick and Serrin [6 ]). I f  the locally linear 

tensor func t ional  f on ~ "  is such that f t  .[Q(.) _ 1(91 = 0 

for  any tensor f unc t ion  Q(.) : R ~ d9 +, Q - 1 E , f f ,  then f 

vanishes identically on , ~ .  

3. LINEAR ELASTICITY AND VISCOELASTICITY WITH 

NON-ZERO RESIDUAL STRESS. 

3.1. Objective Cauchy Stress Tensor. 

The consequences of  objectivity on the Cauchy stress 

tensor function q~ are now achieved by means of  a procedure 

which generalizes the one used by Truesdell [5]. To begin 

with, express the conditions (2.2), (2.4) in terms of  F;  

it follows that the relation 

Q(A + B [ F ] -  B[I])Q r = A + B [ Q F ] -  B[I] (3.1) 

must be true for all invertible tensois F, such that F --  1 E D' ,  

and all proper orthogonal tensors Q such that QF - I E D ' .  

Hence, choosing F = ~1, 3' ~: 0, implies that 

QAQ T - A = 3'B[Q] - B[I] + (1 -- ~')QB[I]Q r (3.2). 

must hold for any 3, such that ( ' y - - D I E D ' .  Now, it is an 

easy matter  to recognize that eq. (3.2) holds if  and only if 

B[Q] = QB[I]Q r .  

Then, in view of  Appendix A, letting E = 1 we obtain 

B[Q] = 0. Accordingly, eq. (3.2) becomes 

QAQ T - A = 0 

which shows that A commutes with any orthogonal matrix 

and thereafter implies that A = cd, t~ E R. On account of  

these results, eq. (3.1) reduces to 

QB[F]Q r = B[QF]. 

Hence, on appealing again to Appendix A and letting E = F, 

we arrive at B[F] = 0. We can thus assert that the most 

general tensor function T meeting the conditions (2.2), 

(2.4) is 

T[H] = cd, ct E R. (3.3) 

This amounts to saying that a non-vanishing, objective, affine 

Cauchy stress tensor consists of  an isotropic residual stress 

only. Although this requirement allows us to account for a 

non-vanishing Cauchy stress tensor, thereby generalizing 

Fosdick and Serrin's result, it seems that it is too  restrictive 

to let linear elasticity be a theory rather than a useful appro- 

ximation. It goes without saying that the restrictive result 

(3.3) hinges on the validity of  the objectivity principle. 

3.2. Objective Piola-Kirehhoff stress tensor. 

Look at the conditions (2.3), (2.5) and set H = 0; it 

follows at once that 

N[Q --  1] = (Q - I)M. (3.4) 

No generality is lost by letting the linear function N be 

given the form 

N[H] = HM + f[H], 

where, for consistency with (3.4), the linear function f is 

such that f [ Q - l ]  = 0. We can then apply Fosdick and 

Serrin's theorem 1 to obtain that f[H] must vanish identically. 

So N[H] = H M  and therefore the Piola-Kirchhoff stress 
tensor turns out  to be objective if and only if 

S[H] = (H + l)M = FM. (3.5) 

An immediate comparison between equations (3.3) and 

(3.5) shows that, while T can be at most a constant isotropic 

stress tensor, the existence o f  a residual stress allows S to be 
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a non-trivial linear function on F. In either case, however, 

as we should expect the result o f  Fosdick and Serrin is 

recovered by letting A = 0 or M = 0. 

On account of  (3.5), M coincides with the second Piola- 

-Kirchhoff stress tensor and then it must be symmetric. So, 

in general, eq. (3.5) determines S through six elastic moduli.  

Of  course the effective number of  elastic constants may 

reduce because of  the symmetry o f  the material under consi- 

deration. In particular, i f  the material is isotropic the Cauchy 

stress function i" must meet the condition [4] 

i ' [F]  = i ' [FQ],  VQ E 0 .  (3.6) 

Now, since T = I det F I-I  FMF r ,  the condition (3.6) implies 

that 

M = mt  m E R. (3.7) 

In passing, we mention that the objective ansatz (3.7), 

with m as a function of  a suitable hidden variable, has been 

considered by Kosinski [7] in connection with shock wave 

propagation in rheologlcal continua. 

3.3. Objective viscoelasticity. 

In order that the functional (2.6) for the Piola-Kirchhoff 

stress meets objectivity requirements [1] the condition 

Q(t)M + Q(t)JV_ t. [H(.)] = M + j f f _ t  [Q(.) _ 1(.) + (QH)(.)] 

where H(.) E oYta and Q(') : R-+  @ +,  must hold. Hence, 

on letting H(-) = 0(-) we have 

M'2"_ t.. [Q(9 - 1(-)] = (Q(t) - I)M. (3.8) 

Introduce now the functional f o n  oW described by 

rE_ t. [H(.)] = H(t)M + f ' _ .  [H(.)]; 

of  course, in view of  (3.8), f is subject to 

f t_ ,  [Q(.) _ l(.)] = 0. 

So, on appealing to theorem 2 we conclude that f vanishes 

identically and then 

S(t) = F(t)M. (3.9) 

As a result, starting from the functional (2.6) for visco- 

elastic bodies we have shown that, owing to objectivity, 

the Piola-Kirchhoff stress tensor must in fact be a linear 

function on F. Indeed, the function (3.9) coincides with the 

function (3.5) which has been obtained in the context  of  

elasticity. Accordingly, viscoelasticity is an outstanding 

example for showing how severe the restrictions placed 

by objectivity axe. 

It is an easy matter  to see that, in the case o f  the visco- 

elastic Cauchy stress 

T(t) = A + ~[~ t__® [H(-)], H(.) E ~f',  

a strictly analogous procedure leads to the trivial constitutive 

equation T = oil. 

4. OBJECTIVE VISCOELASTICITY FROM OBJECTIVE 

EVOLUTION EQUATIONS. 

Owing to the cumbersome calculations usually associated 

with models based on memory functionals, often the visco- 

elastic behaviour of  materials is described through stress- 

-strain relations involving flows as well, In the simplest 

case such relations have the form 

rl~l + H  = P, H(t 0) = ! I  ° , (4.1) 

where the superposed dot denotes the material t ime derivative 

and r > 0 plays the role o f  relaxation time. For  instance, 

eq. (4.1) accounts for Maxwell's materials by letting l l  be 

the stress and P the material t ime derivative of  the strain 

and for Kelvin-Voigt solids by letting H be the strain and P 

the stress [8]. Besides, equations like (4.1) are also encoun- 

tered as evolution equations for materials with hidden 

variables [9]; in such a case II is the hidden variable and P 

the observable variable goveming the growth of  I I [  10, 11 ]. 

Even though H and P transform as objective tensors under 

(2.1), the presence of  the material time derivative makes 

eq. (4.1) be a non-objective relation. This inconvenience may 

be overcome by replacing the dot derivative with an objective 

time derivative - henceforth denoted by a superposed spot. 

To this end we recall that the most general form of  an 

objective time derivative acting on an objective mixed tensor 

ALL. is [12] 
. , ,  • 

").. =A~).. + ~.;AP').. +...-- 
- . (4.2) 

- -  ~ .P IALp . .  - - . . .  

where -- = ~ -- A, ~ being an arbitrary objective tensor and 
A = - -  A T a non-objective tensor whose transformation law 

under (2.1) is 

A ~ Q A Q  r + t~Q r .  (4.3) 

Two customary examples o f  objective time derivatives axe 

the co-rotational and the convected ones [13]; they cor- 

respond to setting ~ = 0, A = - - W  and I;  = - - D , A  = --W, 

respectively, D being the stretching tensor and W the spin 

tensor. It is worth remarking that, in view of  (4.2), an objec- 

tive time derivative need not commute with raising and 

lowering of  tensor indices; for instance, the co-rotational 

derivative commutes whereas the convected one does not. 

The objective version of  (4.1) is 

r l I  + 1 I  = P, lI( t  0) = ! I  ° . (4.4) 

For  the sake of  definiteness, we assume that 1I and P are 

second rank objective controvariant tensors; then eq. (4.4) 

explicitly reads 

1 1 
I[I--AIi  + I I A +  ~;II + ! ~  r + w  II = w p ,  II(to) = I f  o. 

r r (4.5) 

Equation (4.5) is an objective differential relationship among 

H, P, l~, and A;  its solution may be viewed as a functional 

II(t)  = ~_t[p(.), ~( . ) ,  A (.)1 (4.6) 

on the functions P(-), Y-(.), A(.). It is our goal to investigate 

the objective properties of  the solution (4.6) to (4.5) as a 

functional. To this end we derive first an appropriate expres- 

sion for the restrictions placed on ~ by the objectivity 

principle, according to which 
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Q(t)~t, t [P(.), Z(.), A(.)]QT(t) = 

= ~ t  [QpQr)(.), (QZQT)(.), (QAQT + QQr)(.)] (4.7) t, 
must be true for any proper orthogonal tensor function Q on 

[to, t]. Define a second rank tensor function Y as solution of 

~ '=  AY, Y(t 0 ) = i ;  (4.8) 

as shown in the Appendix B, Y is an orthogonal tensor 
functional on A(.). Then setting Q = yT  in (4.7) provides 

~ t  [p(.), ~ ( . ) ,  A(.)] = t, 
= V(t)~t: [(vTpy)( .) , (yTlgy)( .) ,  0(')] vT(t) (4.9) 

which makes it evident that ~ depends on the non-objective 
tensor A only through Y. On the other hand, if ~ meets 
eq. (4.9), the objectivity of P and ]g and eq. (B2) imply 

that ~ in objective. Hence, eq. (4.9) is a necessary and 
sufficient condition for ~ to be objective. 

The last step of our investigation is now to determine 
whether eq. (4.6) agrees with eq. (4.9). To this purpose 

we must integrate eq. (4.5) so as to get the explicit expression 
for the functional ~ .  On defining the non-singular tensor 
J through the relations 

j = ( v r ~ ; y ) j ,  ~J(t0) = l, (4.10) 

a straightforward but lengthy calculation yields the solution 
to (4.5) as 

/ 

H(t) = Y(t)(jr) - l(t)lH(t0) exp [-- (t -- to)/r] + 

I' I + r -  1 exp [(~ - t)lrl f(~)Yr(~)l'(~)Y(OJ(~)d~ J-  l(t)Yr(t). 

to (4.t 1) 

Accordingly, since J is a functional on ( y r ~ y )  (.) (cfr. 
Appendix B), it turns out that the functional (4.11) is a 
particular case of (4.9) and therefore, as we should expect, 
the solution to the objective differential equation (4.5) is 

an objective functional. 

APPENDIX A 

Look at the linear function B mappingD' into L such that 

Bt/(E) = bi/hkEhk, i, j = 1,2, 3. (A 1) 

Suppose further that, for a fixed E, B satisfies the condition 

B[QE] = QB[E] Qr (A 2) 

for every Q E O +, QE ED' .  As we show below, (A 2) implies 
B[E] = O. In view of(A 1), condition (A 2) reads 

b t/hk Qhp Epk = Qip Q/q b pqhk Ehk" (A 3) 

AS D' is open, derivation of (A 3) with respect to Qrs is 
allowed; it turns out that 

bilrkEsk = 5irbsqhkQ]qghk 4" ~]rbpshkQipEhk. 

Hence, multiplication by Qrs yields 

b i/rk QrsE sk = 2QipQlq b pqhkEhk, 

namely 

B[QE] = 2QB[E]Q r .  

The immediate comparison with (A 2) leads to 

B[QE]=0,  QE(9 +, 

and then 

B[E] = 0. 

APPENDIX B 

Letting K = K(t) be an arbitrary time dependent second. 
rank tensor, look at the f'trst order differential equation 

= KZ. (B 1) 

Equation (B 1) has a unique solution such that Z(t 0) assumes 
an assigned value Z 0 [5]; such a solution is given by a func- 
tional 

Z(t) = ~ t  [K(.), Z 0 ] t, 
on K. In view of the identity 

(det Z)" = (det Z) tr(TZ -1 ), 

account of (B 1) implies that 

(det Z)" = (det Z) tr K. 

Hence det Z ( t ) 5 0  provided that det Z(t 0) 4 0  and then 
non-singular initial value tensors lead to non-singular solutions 
to eq. (B 1). 

Consider now the particular case K = - - K  r.  Letting 
71. = ZZ r ,  in view of 03 i) we find that 

Z = K Z - - Z K .  

On appealing to the uniqueness theorem for ordinary differen- 

tial equations the condition 7z(t 0) = 1 implies that 7z(t) = I 
for all t. Accordingly, a solution to (B 1) which is orthogonal 

at t = t 9 is orthogonal for all t. 
Let Z* = K 'Z* be the counterpart of eq. (B 1) under the 

transformation (2.1). Introduce now the further assumption 
that K* = QKQ T + (~Q/" (cfr. eq.(4.5)). On the other hand, 
on account of (B 1) we find that K* = (QZ)*(QZ) r ,  that is 

to say 

(QZ)* = K*(QZ), K* = -- K *r. 

Hence, on appealing again to the uniqueness theorem, we 
assert that 

Z* = QZ (B 2) 

provided Z*(t O) = Q(t 0 )Z(t O) holds. 
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