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Summary .  - -  On appealing to the  recent well-established theory  of mix- 
tures, p lasmas are described in a systematic way as mixtures  of inter- 
acting charged-fluid constituents. Viscosity and heat  conduction of the 
consti tuents are accounted for through the formalism of h idden variables 
so as to allow wave front propagation.  A thermodynamic  analysis is 
performed by  having recourse to the  second law in the  form of the  Clausius- 
Duhem inequali ty,  thus providing a thorough scheme of dissipative effects 
in plasmas. Fo r  example,  as an outs tanding result  of the  investigation,  
i t  follows that ,  in the case of constituents at different temperatures ,  a 
t ransfer  of l inear momentum is unavoidably  associated with a cor- 
respondent  t ransfer  of energy. I t  is then shown how, in the l imit ing 
approximat ion of magnetofluidodynamics,  the  process of electric con- 
duction may  be embodied into the  framework of dissipative effects. 

1 .  - I n t r o d u c t i o n .  

T h e  v e r y  i m p o r t a n t  ro le  p l a y e d  b y  p l a s m a s  is d u e  t o  t h e  f a c t  t h a t  t h e  m a j o r  

p a r t  of t h e  U n i v e r s e  is in  t h e  p l a s m a  s t a t e .  W h i l e  t h i s  m o t i v a t e s  t h e  w ide  

l i t e r a t u r e  on t h e  s u b j e c t  (1), t h e  l a rge  a m o u n t  of e x p e r i m e n t a l  o b s e r v a t i o n s  

a t  our  d i s p o s a l  m a k e s  us  t r y  to  set  u p  m o d e l s  r ea l i s t i c  e n o u g h  t o  a c c o u n t  for  

(1) See, e.g., B. LEH~IEIi~r: S~/ppl. 2VC*OVO Gimento, 13, 59 (1959); P.  A. STIml~OCK, 
Edi to r :  Plasma Astrophysics, Proceedings S.I.~., Course X X X I X  (New York, N . Y . ,  
1967); hi. A. KRALL and A. W. TRIVEL~IEC~: Principles o] Plasma Physics (New 
York, N . Y . ,  1973); H. DEMII~AY and A. C. ERI~GEI~: Plasma Phys., 15, 903 (1973}; 
R. Z. SEGD]~EV: Rev. Mod. Phys., 51, 1, 11 (1979); G. SCH~IDT: Physics of High 
Temperature Plasmas (New York, N .Y . ,  1979), and references therein. 
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the  p lasma behaviour  on cosmical and  l abora to ry  scale (~). Among  the  amazing  
applicat ions of p lasma models we ment ion  t h a t  the  features  of high-frequency 
e lect romagnet ic  waves p ropaga t ing  in a magnet ized  p lasma m ~ y  reveul the  
existence of a black hole in a b inury  sys tem (3). 

Differently f rom wh~t h~ppens in magnetofluidodyn~mics,  in a p lasma,  
par t icular ly  at  low densities, the  s tandard  description in macroscopic t e rms  
becomes inadequate  and  then  we have  to ~ceount for contr ibut ions arising 
f rom the individual  part icle behaviour  and  to regard the  p lasma as two or more 
coupled fluids coexisting in the  same space. I n  other  words, the  p lasma is to  
be viewed as a mix tu re  of fluids. Of course, this outlook is not  a t  all new in 
the  l i te ra ture  (~-6). Yet,  to  our mind,  within the  context  of macroscopic ap- 
proaches,  the  present  s ta te  of the  theory  of p lasmas  as mixtures  is far  f rom 
being conclusive. Besides this, we recall t h a t  in recent  years the  theory  of 
mix tures  has been definitely set t led as a sys temat ic  chapter  of con t inuum 
physics- -see ,  e.g., ref. (7). On the  basis of these observat ions new improve-  
merits of p lasma theory  are likely to be gained b y  s tudying the p lasma be- 
hav iour  f rom the mix tu re  s tandpoint .  Indeed,  new results are expected  to 
arise f rom a detailed analysis  of the  energy balance and of the  second law of 
the rmodynamics .  

I t  is a significant step along the  road  to a realistic mode]  of p lasmas  to  
introduce the  phenomena  of heat  conduct ion and viscosi ty (s) for the  con- 
s t i tuents  of the  mixture.  To do this we cannot  rely upon the  l~avier-Stokes- 
Fourier  theory  because, as is well known,  it  rules out the possibility of wave  
f ront  propagat ion.  Among  the  various descriptions of viscosity and hea t  con- 
duct ion which r emedy  this shortcoming,  the  hidden-var iable  approach  is re- 
commended  b y  its own flexibility (9,~o). Beyond  this sat isfactory feature,  two 
reasons a t  least  jus t i fy  the  recom-se to the  hidden-variable  tool. First ,  con- 
t i nuum theories are applicable to a good approx imat ion  a t  low densities provided 

(2) H. AL~W~: Phys. Today, 24, 28 (1971). 
(a) R. A. BRXU]~R and J. ]~HLERS: Proe. R. Soc. London Set. A, 370, 389 (1980). 
(4) L. SPITZ~R: Physics of t'ully Ionized Gases (New York, N.Y.,  1962). 
(5) A .N .  KAUFMAN: Dissipative effects, in Plasma Physics in Theory and Application, 
edited by W. B. K u ~ L  (New York, N. Y., 1966}. 
(~) P . C .  CL~MMOW and J. P. DOUGHERTY: Electrodynamies o] Particles and Plasmas 
(Reading, Mass., 1969). 
(7) R.M. B o w ~  : Theory o] mixtures, in Continuq~m Physics, edited by A. C. ExI~GXx, 
Vol. I I I  (New York, N.Y.,  1976). 
(s) The viscosity of a fully ionized gas was ~nalysed by S. I. BnAGI~SKII: Soy. 
Phys. JETP,  6, 358 (1958), who showed that viscosity is due primarily to positive ions, 
the viscous stresses duo to electrons being generally negligible. 
(~) See, e.g., F. BAMPI and A. MORRO: J. Math. Phys. (N. Y.), 21, 1201 (1980). 
(to} B. D. COL]~A~ and M. E. GUICTIN: J .  Chem. Phys., 47, 597 (1967); W.A.  DAY: 
Arch. Ration. Mech. Anal., 62, 367 (1976); A. Molr Arch. Mech., 32, 145 (1980). 
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t h a t  suitable re laxat ion  t e rms  are t a k e n  into account  (11). Second, h idden 
var iables  have  been proved  to  be  a re levant  formal ism for describing a t  a 
macroscopic level typ ica l  behaviours  of microscopic theories (12). 

The p lan  of the  pape r  is as follows. I n  sect. 2 we review briefly the  general  
ba lance  equat ions of a react ing mix tu re  and  then  we app ly  t h e m  to  plasmas.  
To account  for viscosi ty and  hea t  conduction,  in sect. 3 the  p lasma is g iven 
the  s t ructure  of mate r ia l  wi th  hidden variables.  The const i tu t ive  theory  is 
developed b y  s ta r t ing  f rom assumpt ions  general  enough and b y  examining  
their  compat ib i l i ty  wi th  the  second law of t he rmodynamics  in the  fo rm of 
the  Clausius-Duhem inequali ty.  As a par t icular  case, sect. 4 delivers a prom- 
inent  const i tu t ive  theory  which is the  mos t  direct extension to  p lasmas  of 
a nons ta t iona ry  :Navier-Stokes-Fourier-l ike theory  (~2). 

Two significant applicat ions are presented in the  second pa r t  of the  paper .  
First ,  we are accustomed to  considering energy t ransfers  originated f rom dif- 
ferences of t empera tu res  (5); sect. 5 shows tha t ,  whenever  the  const i tuents  of 
the  mix tu re  are a t  different t empera tures ,  a t ransfer  of l inear m o m e n t u m  is 
unavoidab ly  associated with  a correspondent  t ransfer  of energy arising f rom 
differences of kinetic energies. This result,  reasonable on physical  grounds, 
follows as a s t ra ight forward  consequence of the  theory  of mixtures .  Second, 
sect. 6 exhibits  an approach  to maguetof lu idodynamics  as a suitable l imit  of 
p la sma  physics. Such an approach  gives new insights into the  me thod  of ac- 
count ing for dissipative effects in nons ta t ionary  magnetof lu idodynamics  (14). 

2. - B a l a n c e  equat ions .  

Roughly  speaking a p lasma is a mul t i componen t  fluid whose const i tuents  
are electrons, neut ra l  a toms  and  one or more  types  of ions. Accordingly, we 
idealize a p la sma  as a react ing mix tu re  M of ~ ~ 2 fluid components  labelled 
b y  the  suffix ~ ~ - - -  1 (electrons)~ 0 (neutral  atoms)~ 1, ..., v (ions). Thus,  
if we let n ~ be the  num ber  densi ty  of the  ~-th const i tuent  a n d - -  e s tand for the  
electron charge, the  quan t i ty  o~n~e represents  the  charge density.  The par-  
ticles of the  ~-th const i tuent  are identified wi th  their  posit ion X ~ in a suitable 
reference configuration. As usual,  a t  any  t ime  t each place x in M is assumed 
to  be  occupied s imul taneously  b y  part icles of all ~ ~- 2 const i tuents .  A backward  
pr ime affixed to  a symbol  wi th  a suffix a denotes the  mate r ia l  t ime  der iva t ive  
following the  mot ion  of the  ~-th const i tuent .  Fo r  example ,  v ~  x '~ 

~x~(X ~, t)/~t is the  velocity.  The symbol  V stands for the  spat ia l  gradient  

(11) M. CARRASSI and k .  MORRO: 
(12) A. MORRO: Int. J. Eng. Sci., 
(is) A. MORRO: Bend. Sere. Mat. 
(14) F. BAMPI and A, MORRO: J.  

1Vuovo Cimento B, 9, 321 (1972); 13, 281 (1973). 
18, 913 (1980). 
Univ. Padova, 64, 59 (1980). 
Non-Equilib. Thermodyn., 6, 1 (1981). 
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operator, while P : Q  denotes the complete contract ion of the second-order 
tensors P, Q, viz. P : Q  ~-- t r  (pQT), QT being the transpose of Q. 

Let t ing  m ~ be the weight of the particles of the ~-th constituent,  the bal- 
ance equation for mass can be wri t ten as 

(2.1) m~'(n '~ § n:' V .  v ~) : ~ ,  

where d~ is the mass supply. Multiplication of (2.1) by  ae/m ~ gives the balance 
equation for charge, namely  

(2.2) ae(n '~' § n~ V.v~') - -  
ae~, 
m ~ 

Of course~ conservation of mass and charge for the mixture as a whole implies 
t ha t  

(2.3) Z e ~ =  0, 5~e: /m: = 0. 

Before stating the balance equations for linear momentum,  angular mo- 
men tum and energy in the case of plasmas, look briefly at the corresponding 
general relations foi a mixture (15). The specific surface force is determined 

through the stress tensor T ~, while the body force accounts for the external 
contribution n~ m~f  ~ and for the momentum supp ly /~ ;  thus the balance of line- 
ar momentum may  be written as 

(2.4) n~,m~v'~ = V .  T ~ + t~ ~ ~- n ~m ~f  ~ , 

whele the divergence operator acts on the second index. Naturally,  the supplies 

/ ~ ' s  are subject to the condition 

(2.5) Z ( ~  + ~u~)  = o, 
c~ 

the diffusion velocity u ~ being defined by  

u ~ =  v ~ -  (~n~m~va)/(~n~m~') .  

The balance of angular momentum results in the symmet ry  of the inner stress 

(15) A different look at balance equations for mixtures is delivered in appendix A. 
For a comprehensive account of the theory of mixtures the interested reader is referred 
to ref. (7). 
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tensor T ~ - - ~ T  ~. More specifically, if T~ and T2 s tand for the  symmet r i c  

and  the  skew-symmetr ic  pa r t s  of T ~, we have  

(2.6) ~ r _  ~ = o .  

I f  we denote b y  n~m~r ~, q~ and t~ the  external  hea t  supply,  the  hea t  flux and  
the  energy supply,  respectively,  the  evolution equat ion for the  internal  
energy e ~ m a y  be expressed as 

(2.7) 

where D ~ ---- sym(Vv  ~) is the  s t re tching tensor  and  I r  " ~ skw(Vv ~) is the  spin 
tensor. The consistency of the  balance of energy (2.7) wi th  the  balance  of ener- 
gy for the  mix tu re  requires t h a t  

(2.8) ]~ {~" + u~.p~ + e~[~ + 1 (u~)~]} = o .  

On re turn ing  now to the  case of plasmas,  the  genera] balance equat ions (2.4), 
(2.7) mus t  be supplemented  with the  expressions of the  force n ~ m a f  ~ and the  
hea t  supply  namar~; t hey  are 

(2.9) 

(2.10) 

n~m~ f ~ = an~ e ( E  ~- -l ye' • B )  ~- n~'m~F ~ 
C 

n ~ m ~ r ~ ~-- ~ n  ~ e v ~ . E ~  n a m ~ R ~ 

the  quanti t ies  F ~, R ~ being purely  mechanical  in character .  The electric field 
E and  the  magnet ic  induction B are obviously subject  to  Maxwell 's  equations 
which, in t teavis ide-Lorentz  units ,  read  

(2.11) V •  - -  0 V . B  -~ 0 ,  
c ~t 

V •  1 a E _  e v ( a n ~ v ~ )  ' (2.12) 
v 8t c 

V ' E  = e ~ ( ~ n ~ ) .  
c~ 

The set of fields describing the  behaviour  of the  p lasma  mus t  mee t  the  balance 
equations wri t ten  above.  Of course, the  peculiar propert ies  of the  p lasma  
at  hand  are accounted for via the  in t roduct ion of suitable const i tu t ive  relations ; 
a, scheme f raming  t h e m  in a t h e r m o d y n a m i c  theory  is shown in the  nex t  
section. 
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3.  - C o n s t i t u t i v e  t h e o r y .  

S t a n d a r d  accoun t s  of p lasmas  (le) assign different  t e m p e r a t u r e  fields t o  
t he  var ious  cons t i tuents .  Moreover ,  t he  cons t i tuen t s  are  v iewed as hea t -con-  
duc t ing  viscous fluids, while t he  effect of collisions are  r epresen ted  b y  r e ims  
invo lv ing  re la t ive  velocit ies of the  cons t i tuen t s  (17). As we shu]l see shor t ly ,  

these  aspects  m a y  be embod ied  in a sy s t ema t i c  scheme of p l a sma  as a m ix tu r e  
of fluids w i th  h idden  variables .  

Basical ly ,  a mater iu l  wi th  h idden  variubles  (is) consists of a set  of response  
func t ions  

(p : ~(y, a) 

and  of a func t ion  h govern ing  t he  evolu t ion  of t he  h idden  var iables  a t h r o u g h  
t he  different ial  e q u a t i o n  

= h(y,  z, a ) ,  

where  t he  symbols  y,  z s t and  for  sui table  sets of real  (physical)  var iables  and  
t he  superposed  do t  denotes  the  r e l evan t  ma te r i a l  t ime  der ivat ive .  

Since t he  ma te r i a l  a t  h a n d  is a mixtm.e  of v - ~  2 fluid cons t i tuen ts ,  we 
assign it  t h e  s t ruc tu re  of ma te r i a l  wi th  h idden  var iables  b y  iden t i fy ing  y wi th  t he  
ordered  a r r a y  (0 -1, 0 ~ ..., 0r; q~-1, n o, ..., nr; v - l ,  v o, ---, v~; ~7-1, Wo,- . . ,  ~Tr) (19) 

a n d  z wi th  the  ordered  a r r a y  (D -1, D ~ ..., Dr ;  g - l ,  go, ..., gr). The  h idden  
var iables  a are  the  ordered  a r r a y  @.-1, y.o, ..., ~ ;  O-1, 0 o, ..., Or; A- l ,  A o, ..., A r) 

of the  s y m m e t r i c  second-order  t raceless  tensors  ~.~, of t he  scalars 0 ~ and  of t he  
vec tors  A ~. F ina l ly  the  response  func t ions  ~ are  identif ied wi th  the  ordered  
a r r a y  (~-~, V ~ ..., ~o~; s -1, s ~ . . . ,  st; T -1, T ~ . . . ,  T ' ;  q - l ,  qO, . . . ,  q~; ~-1, ~o, . . . ,  dr; 

j~-l,/~o, . . . , /Tr;  ~-~, ~o, ..., ~),  where  s ~ is t he  e n t r o p y  and  ~ p ~ :  ~ - - O ~ s  ~ is 
t he  free energy.  

To go fu r t he r  we need some ussumpt ions  on t he  evolu t ion  f u n c t i o n  h. I n  
principle,  we could examine  hypo theses  genera l  e n o u g h - - s e e ,  e.g., ref. (lo)__; 

however ,  b o t h  t o  avo id  inessent ia l  fo rmal  difficulties and  to  get  a t h e o r y  
p rov id ing  t he  m o s t  direct  genera l iza t ion  of Nav ie r -S tokes '  and  Four i e r ' s  laws, 

(is) See, e.g., A. N. KAUFMAN: Dissipative e]]eets, in Plasma Physics  in Theory and 
Applicat ion,  edited by W. B. KV~K~L (New York, N.Y. ,  1966). 
(17) See, e.g., P. C. CLEMMOW and J. P. DOUGHERTu Electrodynamics o] Particles 
and Plasmas,  sect. 5 and 6 (Reading, Mass., 1969). 
(is) The reader interested in a more refined approach to materials with hidden variables 
is referred to ref. (lo). 
(19) Of course, owing to the principle of material-frame indifference, the response func- 
tions ~ and the evolution function h should depend on v a and W ~ only through the 
differences v ~ -  v~, W~-- W~, ~, fl : - -  1, 0 .... , v. 
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we choose the  funct ion h so as to make,  for any  fixed part icle X ~, the  evolution 
equations into the  system 

(3.1) ~.'~, = ~ (<D~> - -  ~..a), 

(3.2) 0 '~ = ~ (tr D ~ - -  0~) ,  

1 
(3.3) A'~ = "r--~ (g~ - -  A~) '  

where <D~> = D ~ -- �89 (tr D ~) I. The positive parameters  ~ ,  v: ,  ~ m ay  be viewed 
as relaxat ion times. 

In  connection with the  evolution equations (3.1)-(3.3), we observe t h a t  
sometimes the  material  t ime derivative is replaced with an objective t ime 
derivat ive like, for example,  the  co-rotational one. Set t ing aside any  question 
about  object ivi ty  and objective t ime derivatives (~0), we remark  t h a t  the  re- 
sults of this section are independent  of the  choice of the t ime derivative, while 
quant i ta t ive  differences may  arise in connection with wave propagat ion (n). 

The set of response functions q must  satisfy the  restrictions placed by  the  
second law of thermodynamics .  To make this fact  operative,  we take  tha t  the  
inequal i ty  

v 0ol j >o 

holds at any  point  of the  mix ture  (~). Then,  on account  of (2.7), (2.10), this 
implies t ha t  

(3.4) 1 [ , s~O,~) 1 - - - -q~ 'g~-~  T~_:D~-t- T ~ ' W ~  - ~ +  

Ogs ~ ~ ~- ~enc'v a.E] > 0  

must  be t rue  identically. According to our const i tut ive assumptibns, the  free 
energy ~ of the  ~-th const i tuent  is given by  a funct ion of the  form 

~ ) ~ =  ~)~(0 -1, . . . ,  0f; n -1, . . . ,  n~; V -1, . . . ,  vv; ~ 7-1, . . . ,  W~; 

E -1, . . . ,  EV; 0 -1, . . . ,  0~ ;  A - I ,  . . . ,  A~): 

Hence, in view of the evolution equations (3.1)-(3.3),the en t ropy  inequal i ty  (3.4) 

(so) See, e.g., F. BAMPI and A. MORRO: _~ound. Phys., 10, 905 (1980). 
(~1) F. BAMPI and A. MORa~O: J. Phys. A, 14, 631 (1981). 
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m a y  be expressed as 

(3.5) - - n ~ ' m ~ ' ( ~ f ~ @  s ~ 6 ~ Z )  O ' ~ - ~  T ~ 6 ~ ' ~ - -  T~ ?'~:~ + ~ - ~ ' ~ I  @ 
Tv 

+ 

.. ~, _ ~, . . o, , fl a a a . n ~ m a n ~ m ~' n a m e '  

T s "g v Tflc 

__  n ~ , m ~ , y @ ( v  ~' _ v ~) . g ~  - -  n , m ~ ' y j ~ ( v  ~, - -  v~)  . V n  ~ - -  

- -  n ~m ~ .  [(v ~ -  v ~ ) . V ] v ~ - -  n ~m ~ : [ ( v  ~ -  v~) -V]  W ~ - -  

. . . . . . . .  8" ~ v  ~ - -  v~)- V] ~ - -  n ~ m<'  ~ ( v  ~ - -  v ~ )  . V O  n - -  

6r 6r 6r O~ } - - ~  m ?'^~.[(v - - v ~ ) . V J A  ~ > 0 ,  

where  the  subscr ipts  0~, n ~ ,  v~, We, ~.~, O~, A~ deno te  pa r t i a l  d i f ferent ia t ions  
and  5 ~  is the  usua l  KrSnecker  delta.  Our  purpose  is now to  exploi t  ine- 
qua l i ty  (3.5) so as to  der ive  t he  m a i n  res t r ic t ions  p laced  b y  t he  second law 
of t h e r m o d y n a m i c s  on our  cons t i tu t ive  assumpt ions .  To do this,  we recall  
first t ha t ,  as a lways,  t he  p resen t  values  of t he  h idden  Yariables a(t) are  inde- 
p e n d e n t  of t he  presen t  values of t he  real  var iables  z ( t )  (~,10). Accordingly ,  t he  

quant i t ies  v'~ and  W'~ can  be  chosen arb i t ra r i ly  (~) and  i ndependen t ly  of 
the  o ther  var iables  appear ing  in (3.5). Therefore ,  inequa l i ty  (3.5) holds iden- 
t ica l ly  on ly  if 

n~ m ~ n a m ~ 

Moreover ,  since ~.~( t ) ,  O ~ ( t )  a nd  A~(t) are i n d e p e n d e n t  of D ~ ( t ) ,  g ~ ( t )  and  0'~(t), 
D ~ ( t ) ,  g ~ ( t )  are a rb i t r a ry ,  inequa l i ty  (3.5) implies gha t  

(3.7) s~ = - - - - ~ - ~ O % , n ~ m ~  

n ~ m~ n ~ m a 
(3.s) T~+ = 0 ~  0~ - -  ~ m ~ " ~  + - ~ - V ' ~ +  ~ - ~  ~';"~ + 

i ~, ~, ~, (v~, v n ) ]  
2 

_ l r ~ a m a  ~, 1 
(3.9) qt~ = - -  (0~)~ ~ L ~ 0 ~ / ~ z ~  F a '  + n < ' m ~ ' ~ f ~ ( v  r  v ~ ) ]  �9 

(22) On appealing to the arbitrariness of the external-body forces n ~ m ~ F ~  occurring 
in eq. (2.4), the accelerations v'~ may be viewed as arbitrary vectors. 
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:Now, appeal  to  the  arbi t rar iness  of the  present  values  VIP's, V~-~, VOw, VA~ 
leads to  

(3.10) 

(3.11) 

n~ m-  
~ (v=--v~) | v'~. = o ,  

n a m ~ % 
~ - - ( v = - - v ~ )  | ~'z = 0 ,  

~b~ m ~ (3.12) ~ - V -  ( v ' -  v~) v'~. = o ,  

n ~ m ~ 
(3.13) ~ - ~ -  (v ~ - -  v ~) (~) y '~  ---- 0 .  

Finally,  upon  subst i tu t ing these conditions into inequal i ty  (3.5), we find 
s t r a igh taway  the  reduced dissipation inequal i ty  

(3.14) 
- -  1 V n  ~ m ~ _ ~ ~ a a n m  a ~ n m  a 

§ ( T  ~_: W =  + k ~ § ~ e n = v *  .E)  ~=~ - -  n ~ m ~ ( v  = - -  v~) �9 ( W ~  ~ )  - -  

Thus we m a y  summar ize  the  results so obta ined as follows. 
Look at  a p la sma  as a mix tu re  of v - [ - 2  fluid const i tuents  wi th  hidden 

variables  whose behaviour  is accounted for th rough  the  const i tu t ive  assump- 
t ions s ta ted  above.  Then conditions (3.6)-(3.14) are necessary and  sufficient 
for the  identical  va l id i ty  of inequal i ty  (3.5). Indeed,  the  only  i] pa r t  has  
been proved,  while the  i f  pa r t  is obvious. 

We end this section wi th  the  following remarks .  

R e m a r k  1. A doubt  could be cast  upon  insert ing the  spin tensors W ~ in 
the  y-like var iables  ins tead of into z-like ones. The  insert ion of W ~ into z, 
or possibly into the  evolut ion equat ions for the  hidden variables,  should be 
suggested b y  physical  a rguments .  I t  seems t h a t  suggestions in this sense are 
not  available.  Looking a t  IV ~ as y-like var iable  allows T ~ to be compat ib le  
with t he rmodynamics  wi thout  being identically vanishing and, meanwhile,  i t  
permi ts  us to  account  for a dependence on W ~. 

R e m a r k  2. The fields E and  B are de te rmined  b y  the  quant i t ies  ~ a n  ~ 
c~ 

~o~n~v  ~ th rough  the  Maxwell  equat ions (2.11), (2.12). :Nevertheless, we could 

consider response funct ions ~ dependent  on the  values of E and  B aS well. 

1 2  - I I  N~ovo  ~im~nfo D,  
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Owing to  lack of physical  mot iva t ion  and  in order to  avoid inessential  formal  
complications,  here we do not  account  for such a dependence which will be  
t r ea t ed  aga in  in sect. 6, 

4. - A description o f  dissipative p h e n o m e n a  in plasmas.  

I n  view of eqs. (3.7)-(3.9), any  set of free energy functions V~'s meet -  
ing inequal i ty  (3.14) provides response funct ions s ~, T~, q~ au tomat ica l ly  
consistent  wi th  the  second law of the rmodynamics  in the  form of inequa- 
l i ty  (3.4). Of course, on the  basis of a mere ly  ma thema t i ca l  s tandpoint ,  we 
cannot  prefer  any  set of functions yJ~ among  all those compat ib le  with (3.14). 
An i m p o r t a n t  special case compat ib le  wi th  (3.14) is delivered b y  the  ideal- 
fluid mix tu re  approx imat ion  (7) in which the  free energy ~o ~ of the  a- th  con- 
s t i tuent  depends on densities and  t empera tu res  only th rough  ~ and  0 ~. Beside 
this approx imat ion ,  physical  a rguments  allow us to select a par t icular  class 
of free energy functions in tha t ,  for any  const i tuent ,  the  ansatz  

(4.1) n _ ~ [  1 ~, ~ _~ u~'r F ~'-- ~[te'(O~176 + rf"r~Y-o':Y--~'-]- ~ "L,(O ) 2 +  20 a j ,  

~ ,  ~ ,  u~ being real  constants ,  leads to the  mos t  na tura l  general izat ion of Navier.- 
Stokes '  and  Four ier ' s  laws. To make  this assert ion precise, observe first t h a t  
subst i tu t ion in {3.7)-(3.9) yields the  response functions 

(4.2) 

(4.3) 

(4.4) 

; ~  T ~ 
s ~ = - -  ~ ' ~ +  ~ A ~ ' A ~  

T~. = - - p ~ ' I  + 2 ~ . . ~ +  ~ 0 ~ ' I ,  

where p~' = (n~)~m~'y~:~, is the  pressure of the  a- th  const i tuent .  Now the  re- 
duced dissipation inequal i ty  (3.14) mus t  hold identically. I n  part icular ,  it 
mus t  be t rue  in the  case of a process such tha t ,  a t  any  t ime  t, E ---- 0, IV a ---- 0, 
~a = 0, ~a = 0. I n  this instance,  since the  hidden var iables  are independent  
of each other,  we achieve the  ~ ~- 2 par t ia l  inequalities 

whence 

(4.5) r f>O,  ~'~>0, n~>O. 
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The meaning  of the  pa ramete r s  ~ ,  ~ ,  u~ arises f rom an analysis of s t a t ionary  
processes character ized b y  the  cons tancy in t ime  of g~ and  D ~. I n  such a case 
a sympto t i ca l ly  we have  

0 ~ = t r  D a A ~ = ga 2:~ = <Day , , , 

and  hence eqs. (4.3), (4.4) become the  s t andard  laws of viscosi ty and  hea t  
conduction.  This enables us to  ident i fy  the  pa rame te r s  ~ ,  ~ ,  ~ wi th  the  
usual  viscosi ty and  hea t  conduct ion coefficients and  to  regard the  restr ict ions 
(4.5) as S tokes -Duhem's  and  Four ier ' s  inequalities. 

R e m a r k  3. The explicit  fo rm of the  pa r t i a l  pressure p~, name ly  

20  ~ 

shows t h a t  the  ac tual  pressure differs f rom the  hydros ta t ic  pressure (n~)2m~2= 
as to a quadrat ic  contr ibut ion of the  hidden variables.  Accordingly, eq. (4.3) 
reduces exac t ly  to Navier-Stokes '  equat ion  in the  l inear approximat ion .  

5. - Energy and m o m e n t u m  transfer between constituents.  

The l i tera ture  on p lasmas  bears evidence of par t icular  expressions for energy 
and  m o m e n t u m  t ransfer  be tween ions and  electrons. Such expressions are 
usually suggested b y  kinet ic- theory a rguments ;  hence it  is of interest  to ex- 
amine  whether  and  how they  m a y  be embodied  into the  present  scheme of 
p lasmas  as mixtures .  

Look at  nonreac t ing  const i tuents ,  i .e .  ~ = O, in the  case in which the  par t ia l  
stresses are symmetr ic ,  i .e .  T ~_ = O. The interact ions be tween const i tuents  
then  show up as the  growths  of energy 1 ~ and  the  growths  of l inear m o m e n t u m  
m :  (see appendix  A). As usual,  we take  t h a t  m ~, namely  the  m o m e n t u m  
t ransferred to the  ~-th const i tuent  b y  collisions wi th  all the  other  const i tuents ,  
m a y  be wr i t ten  as (6) 

(5.1) 

where 

(5.2) 

m = =  ~ M = ~ ( v ~ -  v~) 

M a ~ -  M ~  a = 0 ,  

in view of requi rement  (A.5). Meanwhile,  i t  is reasonable to  assume t h a t  the  
growths  of energy 1 ~ involve bo th  differences of t empe ra tu r e  and  differences 
of kinetic energy. Accordingly, set 

(5.3) ~= = ~ {K=~(0~ --  0~) + �89 --  (+~)~]} ; 
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condit ion (A.6) requires t h a t  

(5.4) ~ K:~ - -  K~: = 0 ,  ~ N : ~ - -  N~:  = 0 ; 

hencefor th  K~,~, M:~ and  iY:~ are assumed to be symmetr ic .  
Consider now the  en t ropy  inequal i ty  (3.14). The independence of the  

growths  m ~ and  1 ~, and  hence ~ ,  of the  hidden var iables  ~.~, O ~ and  A ~, to- 
gether  with the  arbi trar iness of the  electric field E,  the  spin tensors ~7: and 
the  densi ty  gradients  ~:, allows us to  write 

(5.5) ~ / 0 = > 0 .  
c~ 

Thus,  as shown in appendix  B, in the  case of const i tuents  a t  different t em-  
peratures ,  assumpt ions  (5.1), (5.3) are compat ib le  with the rmodynamics  if 
and  only if (23) 

(5.6) iV ~ = M '~  , a # fl, 

(5.7) 

Some comments  seem to be in order. The contr ibut ion of the  t e m p e r a t u r e  
diffe: ences to the  growths  of energy has a l ready been invest igated in ref. (5), 
where the  posit iveness of the  quan t i ty  K ~  is p roved  via  kinet ic- theory argu- 
ments .  Similarly, kinetic theory  accounts  for the  positiveness of the  quan t i ty  
M ~ .  Thus the  inequalities (5.7) merely  res ta te  known propert ies.  Then the  
new result  emerging f rom this section is tha t ,  in view of compat ib i l i ty  with 
the rmodynamics ,  growths  of energy and  growths  of l inear m o m e n t u m  are 
in terre la ted th rough  conditions (5.6). Thus the  presence of growths  of lin- 
ear m o m e n t u m  implies the  presence of growths  of energy. If ,  however,  the  
const i tuents  are a t  a common tempera tu re ,  relat ion (5.6) is no longer a con- 
sequence of t he rm odynam i cs ;  t ha t  is why usually N ~  is assumed to vanish.  

6. - From plasma physics to magnetofluldodynamics.  

Magnetof luidodynamics  deals wi th  the  mot ion  of conduct ing fluids. As 
such, i t  m a y  be viewed as l imit  of p la sma  physics under  the  approx imat ion  
of high density.  On the  other  hand,  conduct ing fluids, or dense ionized gases, 
are character ized b y  a high co]lision frequency.  I n  this regime, under  the  
act ion of applied fields, electrons and  ions move  in such a way  tha t  there  is 
no separat ion of charge (i.e. ~ a n ~  6). Basically we m a y  summar ize  the  

(23) We remind the reader that the diagonal terms of the matrices N, M, K have no 
physical meaning. 
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effects of high collision f requency by  saying t h a t  the  mot ions  and  the  t em-  
pera tures  of electrons, ions and  a toms near ly  coincide (i.e. u ~ '~  0, 0 ~ ~ 0), 
while the  net  effect of ionization vanishes (i.e. ~ ~ 0) and  the  densities of the 
const i tuents  are subject  to  the  condit ion (24) 

(6.1) n ~ - - n ~  ~' n~__O, ~ 2  , �9 

On the  basis of these observations,  we move  on to set up suitable equa- 
tions for magnetof lu idodynamics  s ta r t ing  f rom equations of p lasmas  as mix-  
tures of fluids. Consider first the  cont inui ty  equat ion  (2.1). I f  we let Q --~ ~nC'm% 

summat ion  over  ~ gives 

(6.2) ~ + QV "v ---- O, 

where v = ~n~m~vr is the  mean  veloci ty  and  the  superposed dot  s tands  
ct  

for the  corresponding mater ia l  t ime  derivat ive.  According to  the  above  con- 
siderations, hencefor th  we approx ima te  the  mass  densi ty  n~m ~ and the  veloci ty  
v ~ with Q and v. Look now at  the  balance  of l inear m o m e n t u m  (2.4) ~nd sum 
over  ~. On account  of (2.5), (2.9), we find t h a t  

(6.3) QiJ ~- V . T  ~ J •  ~ o F ,  

where T = ~ T ~ is the  to ta l  symmet r i c  stress and  J---- e ~ v  ~ is the  electric 

current .  I t  is wor th  r emark ing  tha t ,  besides occurring in eq. (6.3), the  electric 
current  J satisfies a generalized Ohm's  law which extends Spitzer 's  one (4) 
to  the  case in which neutra l  a toms are present .  To this end, we observe t h a t  
mult ipl icat ion of eq. (2.4) b y  ~e/m r and summat ion  o:r ~ provide 

i T '  T ~  [/7'  /9"\ 

~e  

Moreover,  express the  forces p '  and  p* via  eq. (5.1), namely  

p ' =  M~'(v"  - -  v ' )  -b  M ' ~ ( v  ~ - -  v i )  , P "  ---- M i ' ( v  ' -  v ~) Jr  M ~  - -  r e )  �9 

Therefore,  on assuming t h a t  the  coefficients M '~, M "~ are s imply propor t ional  

(34) To avoid misunderstandings, in this section we denote the constituents by the 
indices e (electrons), a (atoms), i (ions) instead of - - 1 ,  0, 1. 
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to the masses m ~ and m*, namely M ~ = m ~;6 M~ = m~ X, and on accounting 
for the ident i ty  

o _  , 

n\m'  m ' / - - m ' m  ~ 2 4 7 2 4 7  e m ' m ~ J '  

in the linear approximation we find tha t  

rot+ m~l ) 
I6.4) + 

since m~vt q - ~'teve~ (m' q- me)v. 
As to the balance of energy, we emphasize that ,  within the approxima- 

tions stated at the  beginning of the section, we have D ~  D " ~  D, W ~ 
W ~  W for every a, while eq. (2.8) reads ~ = 0. Thus the summation 

over a of eqs. (2.7) and the use of (2.6), (2.10) yield 

(6.5) ~ = ~R ~- J . E  ~ T:D--  V .q  , 

where e = ~n~m~,~/~ ~_ ~" is the internal energy and q ~ - ~ q *  is the heat  

flux. Finally the en t ropy inequali ty (3.4) takes the form 

(6.6) --~(~ q- sO)--og, q q-- T:D + J.E>O , 

since ~ = ~ n = m ~ , ~ l ~  ~" and s = ~,n~m~s~l~ s". 

Equat ions  (6.2)I (6.3), (6.5), (6.6) are exactly the s tandard balance equations 
of magnetofluidodynamics.  Customarily these equations are supplemented by  
a consti tutive relation for the electric current J. I n  the present context  eq. (6.4) 
provides a natura l  suggestion for such a relation; a comprehensive scheme of 
magnetofluidodynamics which embodies a consti tut ive equation of this type  
is delivered in ref. (xd). 
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APPENDIX A 

The balance equations governing the behaviour of a reacting mixture may 
be derived straightaway from their intergral version~see, e.g., ref. (~5). In so 
doing, the balance equations for mass, linear momentum and energy take 
the form 

(A.1) m ~ [ ~  -~- V.(n~v~)] = ~ ,  

(A.2) .. ~ (nam~va) ~ V. (n~,m~v a ~ v a - -  T~') - -  n~m~,fc, _~ m a ,  

the quantities ~ ,  m ~, 1 ~ being called growth of mass, growth of linear mo- 
mentum and growth of energy, respectively. The requirement that  mass, linear 
momentum and energy are conserved for the mixture as a whole implies that  

(A.5) ~ m ~  = 0,  

(A.6) ~l~ = 0 .  

Equations (2.1), (2.4) and (2.7) of the text  are recovered from eqs. (A.1)-(A.3) 
through direct calculation. In  particular, it results that  the growths of mass 
are just the mass supplies, while 

(A.7) 

(A.8) 

~ ~ m ~ -  ( ~ ) ~  , 

In view of relations (A.5), (A.8), conditions (2.5)-(2.8) are completely equivalent 
to properties (A.4)-(A.6). 

APPENDIX 

Assume the quantities m ~ and l~ to be given by eqs. (5.1), (5.3). On ac- 
count of (A.8), we get 

(35) C. A. TRUESDELL: Rational Thermodynamics (New York, :N. Y., 1969). 



184 F. BAMP~ and A. ~ORI~O 

S y m m e t r i z e  t h i s  e x p r e s s i o n  w i t h  r e s p e c t  to  ~, fl b y  i n t e r c h a n g i n g  g, fl a n d  b y  
a d d i n g  t h e  r e s u l t i n g  exp res s ions  t o g e t h e r .  I n  v i ew  of eqs.  (5.2), (5.4) we h a v e  

~ 1 1  / N~ [(v~)~_ (va)~] ( ~ _  ~)  _~_ 

+ M~,B(v~,--v~). \Oc, o~/J" 

Now,  owing  to  t h e  i d e n t i t y  

(v~--v~). y; - -~  =~  N + ~  (v~--v~)~+~[(~)~--(~)] y;- -~  , 

we o b t a i n  

~ K ~  0~0 ~ Jr ~ M ~ ~- ~ (v - -  v~) ~ ~- 

(1 1)1 + 5 ( ~ -  M ~ / [ ( ~ / , -  (v~)~] N - - N  " 

Thus  i n e q u a l i t y  (5.5) p r o v i d e s  (~a) 

~ K c ' a > O  , ~ M ~ a > 0  , ~ =/=~. 

Also ,  on a p p l y i n g  t h e  G a l i l e a n  t r a n s f o r m a t i o n  v~--> v ~ - ~  c a n d  a p p e a l i n g  
t o  t h e  a r b i t r a r i n e s s  of v ~ -  v ~, O ~ -  0 r, i t  fo l lows t h a t  ~ ~ M ~  (~ ~a fl) 
i f  t h e  c o n s t i t u e n t s  a r e  a t  d i f f e ren t  t e m p e r a t u r e s ,  whi le  1V~B is c o m p l e t e l y  unre-  
s t r i c t e d  if  t h e  c o n s t i t u e n t s  a r e  a t  a c o m m o n  t e m p e r a t u r e .  

�9 R I A S S U N T 0  

Sulla base della teoria  delle misture e laborata  negli ul t imi  anni si t ra t tano  i plasmi in 
maniera  sistematica come misture di costi tuenti  fluidi carichi interagenti .  La  viscosit~ 
e la conduzione di calore sono descri t t i  mediante  il  formalismo delle var iabi l i  nascoste 
in modo da rendere ammissibile la propagazione di fronti  d 'onda.  L 'anal is i  della com- 
pat ibi l i t~ del modello con la termodinamica  ~ effet tuata eonsiderando la seconda legge 
nella forma della diseguaglianza di Clausius-Duhem; come risul tato si ott iene uno 
schema completo di effetti dissipat ivi  nei plasmi. Per  esempio, si mostra che nel easo 
di cost i tuenti  a tempera tura  diversa un trasferimento d ' impulso ~ inevi tabi lmente 
legato ad un corrispondente trasferimento di energia. Infine si mostra  che, nel easo l imite 
delia magnetofluidodinamica, il  fenomeno delia conduzione elettrica pub essere inglo- 
bato nel contesto degli effetti dissipativi.  
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I [o .~xo~,  HCllo.rlb3yloIHm~ Teopmo cMece]~, Ir H.~a3Me C ~HCCHllaTIH[BHblMH ~iB~IeHImMH. 

Pe310Me (*). - -  H a  OCHOBC Hc]~aBHO pa3BHTO~ TCOpHH CMCCe~ OnnC~IBaCTC~ nna3Ma CHC- 

TCMaTH~eCKIIM o~pa3oM, KaK CMCCb B3aHMO~CHCTByIOIIIHX 3apSDKCHHbIX ~H]IKHX KOMIIO- 

HCHT. B~I3KOCTI, H TCHflonpoBo~IOCTb ~THX KOMHOHCHT O~%HctLqtOTC~I C HOMOmbIO ~opMa -  

JlI43Ma cKpbITIdX IIepeMeHHIdX, ~ITO II03BOJ/HCT OIInCaTb pacIIpOCTpaHCHI4C BOJIHOBOrO 

~poHTa.  1-[pOBO~HTC~t aHaJIH3 COBMCCTHMOCTH HpC~JIO~KeHHOH MO~eJIH CO BTOpbIM 3aKOHOM 

TepMO~y~HaMHKII B ~OpMe HCpaBCIICTBa K~ay3Hyca-~yxcMa.  B pe3ynbTaTC 3TOrO no~Iy- 

~aeTc~ nonHa~  cxeMa ~HCCHrlaTHBH~IX 3~)eKTOB B HJ-Ia3MC. HanpHMep,  no~a3bmaeTc~,  

�9 ITO B cHyxIae KOMHOHeHT npR pa3fln~H~IX TCMnCpaTypax ncpeHOC nMny~bca  HOH36e~KI-IO 

GB~I3aH C COOTBOTCTByIOIHHM nCpCHOCOM 3HcprHH. ~aTeM HOKa3bIBaeTCfI, KaK B Ilpc~eJIbHOM 

cJIyqac MarHHTHO~ rH~pO~mmM~KH Rpo~ccc 3JIeKTpOIIpOBO~HOCTH MO~KCT 6/~ITb BKJIIO~IOH 

B paMKn ~I~ICcHnaTHBHI~IX ffBHCHI~. 

(*) IIepeoeOeno pe~)agu, ueiL 


