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Summary. — On appealing to the recent well-established theory of mix-
tures, plasmas are described in a systematic way as mixtures of inter-
acting charged-fluid constituents. Viscosity and heat conduction of the
constituents are accounted for through the formalism of hidden variables
80 as to allow wave front propagation. A thermodynamic analysis is
performed by having recourse to the second law in the form of the Clausius-
Duhem inequality, thus providing a thorough scheme of dissipative effects
in plasmas. For example, as an outstanding result of the investigation,
it follows that, in the case of constituents at different temperatures, a
transfer of linear momentum is unavoidably associated with a cor-
respondent transfer of energy. It iz then shown how, in the limiting
approximation of magnetofluidodynamics, the process of electric con-
duction may be embodied into the framework of dissipative effects.

1. — Introduction.

The very important role played by plasmas is due to the fact that the major
part of the Universe is in the plasma state. While this motivates the wide
literature on the subject (1), the large amount of experimental observations
at our disposal makes us try to set up models realistic enough to account for

(1) See, e.g., B. LEaNERT: Suppl. Nuove Cimento, 13, 59 (1959); P. A. STURROCK,
Editor: Plasma Astrophysics, Proceedings S.I.F., Course XXXIX (New York, N.Y,,
1967); N. A. KrarL and A. W. TRIVELPIECE: Principles of Plasma Physics (New
York, N.Y., 1973); H. DeMirAY and A. C. ERINGEN: Plasma Phys., 15, 903 (1973);
R. Z. SeGDEEV: Rev. Mod. Phys., 51, 1, 11 (1979); G. ScaMmipT: Physics of High
Temperature Plasmas (New York, N.Y., 1979), and references therein.
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170 F. BAMPI and A, MORRO

the plasma behaviour on cosmical and laboratory scale (2). Among the amazing
applications of plasma models we mention that the features of high-frequency
electromagnetic waves propagating in a magnetized plasma may reveal the
existence of a black hole in a binary system (3).

Differently from what happens in magnetofluidodynamics, in a plasma,
particularly at low densities, the standard description in maecroscopic terms
becomes inadequate and then we have to account for contributions arising
from the individual particle behaviour and to regard the plasma as two or more
coupled fluids coexisting in the same space. In other words, the plasma is to
be viewed as a mixture of fluids. Of course, this outlook is not at all new in
the literature (*¢). Yet, to our mind, within the context of macroscopic ap-
proaches, the present state of the theory of plasmag as mixtures is far from
being conclusive. Besides this, we recall that in recent years the theory of
mixtures has been definitely settled as a systematic chapter of continuum
physics—see, e.g., ref. (7). On the basis of these observations new improve-
ments of plasma theory are likely to be gained by studying the plasma be-
haviour from the mixture standpoint. Indeed, new results are expected to
arise from a detailed analysis of the energy balance and of the second law of
thermodynamics.

It is a significant step along the road to a realistic model of plasmas to
introduce the phenomena of heat conduction and viscosity (8) for the con-
stituents of the mixture. To do this we cannot rely upon the Navier-Stokes-
Fourier theory because, as is well known, it rules out the possibility of wave
front propagation. Among the various deseriptions of viscosity and heat con-
duction which remedy this shortcoming, the hidden-variable approach is re-
commended by its own flexibility (>1°). Beyond this satisfactory feature, two
reasons at least justify the recourse to the hidden-variable tool. First, con-
tinuum theories are applicable to a geod approximation at low dengities provided

(3) H. ALFvéiN: Phys. Today, 24, 28 (1971).

(®) R. A. BrREvUER and J. EBLERS: Proc. R. Soc. London Ser. A, 370, 389 (1980).
(*) L. Spirzer: Physics of Fully Ionized Gases (New York, N.Y., 1962).

(5) A. N. KAUFrMAN: Dissipative effects, in Plasma Physics in Theory and Application,
edited by W. B. KunkerL (New York, N.Y., 1966).

(®) P. C. CLeMmow and J. P. DougHERTY: Elecirodynamics of Particles and Plasmas
(Reading, Mass., 1969).

() R.M. Bowen: Theory of miwtures, in Continuum Physics, edited by A. C. ERINGEN,
Vol. ITI (New York, N.Y., 1976).

(8) 'The viscosity of a fully ionized gas was analysed by S. I. Bracinskir: Sov.
Phys. JETP, 6, 358 (1958), who showed that viscosity is due primarily to positive ions,
the viscous stresses due to electrons being generally negligible.

(®) See, ¢.g., F. Bamp1 and A. Morro: J. Math. Phys. (N. Y.), 21, 1201 (1980).

(**} B. D. CoLeMaN and M. E. GUrTIN: J. Chem. Phys., 47, 597 (1967); W. A. Davx:
Arch. Ration. Mech. Anal., 62, 367 (1976); A. MorRro: Arch. Mech., 32, 145 (1980).
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that suitable relaxation terms are taken into account (*1). Second, hidden
variables have been proved to be a relevant formalism for describing at a
macroscopic level typical behaviours of microscopic theories (12).

The plan of the paper is as follows. In sect. 2 we review briefly the general
balance equations of a reacting mixture and then we apply them to plasmas.
To account for viscosity and heat conduction, in sect. 3 the plasma is given
the structure of material with hidden variables. The constitutive theory is
developed by starting from assumptions general enough and by examining
their compatibility with the second law of thermodynamics in the form of
the Clausius-Dubem inequality. As a particular case, sect. 4 delivers a prom-
inent constitutive theory which is the most direct extension to plasmas of
a nonstationary Navier-Stokes-Fourier-like theory (12).

Two significant applications are presented in the second part of the paper.
First, we are accustomed to considering energy transfers originated from dif-
ferences of temperatures (°); sect. 5 shows that, whenever the constituents of
the mixture are at different temperatures, a transfer of linear momentum ig
unavoidably associated with a correspondent transfer of energy arising from
differences of kinetic energies. This result, reasonable on physical grounds,
follows as a straightforward consequence of the theory of mixtures. Second,
sect. 6 exhibits an approach to magnetofinidodynamics as a suitable limit of
plasma physics. Such an approach gives new insights into the method of ac-
counting for dissipative effects in nonstationary magnetofiuidodynamics (*4).

2. — Balance equations,

Roughly speaking a plasma is a multicomponent fluid whose constituents
are electrons, neutral atoms and one or more types of ions. Accordingly, we
idealize a plasma as a reacting mixture M of v + 2 fluid components labelled
by the suffix ¢« = — 1 (electrons), 0 (neutral atoms), 1,...,» (ions). Thus,
if we let n* be the number density of the «-th constituent and — e stand for the
electron charge, the quantity an*e represents the charge density. The par-
ticles of the o-th constituent are identified with their position X* in a suitable
reference configuration. As usual, at any time ¢ each place x in M is assumed
to be occupied simultaneously by particles of ally + 2 constituents. A backward
prime affixed to a symbol with a suffix « denotes the material time derivative
following the motion of the «-th constituent. For example, v* = x'¢ =
= 0x*(X<*, t)/ot is the velocity. The symbol V stands for the spatial gradient

(#) M. Carrasst and A. MorrO: Nuovo COimenio B, 9, 321 (1972); 13, 281 (1973).
(*2) A. Morro: Int. J. Eng. Sci., 18, 913 (1980).

(3%) A. Morro: Rend. Sem. Mat. Univ. Padova, 64, 59 (1980).

(*¢) F. Bamp1 and A. Morro: J. Non-Equilib. Thermodyn., 6, 1 (1981).
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operator, while P.Q denotes the complete contraction of the second-order
tensors P, Q, viz. P;Q = tr (PQ"), Q" being the transpose of Q.

Letting m* be the weight of the particles of the a-th constituent, the bal-
ance equation for mass can be written as

(2.1) mams - peV vs) = 6%

where é* is the mass supply. Multiplication of (2.1) by ae/m* gives the balance
equation for charge, namely

el

md

(2.2) o(g(n‘a+ ’)‘L"‘V'v"‘) —

Of course, conservation of mass and charge for the mixture as a whole implies
that

(2.3) dér=0, Sab*m*=0.

Before stating the balance equations for linear momentum, angular mo-
mentum and energy in the case of plasmas, look briefly at the corresponding
general relations for a mixture (18). The specific surface force is determined
through the stress temsor T%, while the body foree accounts for the external
contribution n*m* f* and for the momentum supply P*; thus the balance of line-
ar momentum may be written as

(2.4) n*m*v'® = V-T* + p* + ne*m*f*,

where the divergence operator acts on the second index. Naturally, the supplies
P¥'s are subject to the condition

(2.5) S (Pt dun) =0,
the diffusion velocity u* being defined by
u* = v — (Snrm=v?)[(Snrme) .

The balance of angular momentum results in the symmetry of the inner stress

(1) A different look at balance equations for mixtures is delivered in appendix A.
For a comprehensive account of the theory of mixtures the interested reader is referred
to ref. (7).
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tensor T= > T% More specifically, if T# and T stand for the symmetric

and the skew-symmetric parts of T%, we have

(2.6) STe=0.

If we denote by n*m*r*, g* and & the external heat supply, the heat flux and
the energy supply, respectively, the evolution equation for the internal
energy &* may be expressed ag

(2.7) n*mee'* = n*mer* 4 T¢:D* + T*. W*— V-q* } &,

where D* = gym(Vv%) is the stretching tensor and W2 = skw(Vv*) is the spin
tengor. The consistency of the balance of energy (2.7) with the balance of ener-
gy for the mixture requires that

(2.8) {4 ur-pr + e + (w2} = 0.

On returning now to the case of plasmas, the general balance equations (2.4),
(2.7) must be supplemented with the expressions of the force n*m*f* and the
heat supply n*m*s%; they are

(2.9) nEmo fo = amae(E + = v"‘XB) + nemeFe

(2.10) n* me % = an® e v*- E+ n* me R*,

the quantities F'*, R* being purely mechanical in character. The electric field
E and the magnetic induction B are obviously subject to Maxwell’s equations
which, in Heaviside-Lorentz units, read

(2.11) V><E+l§£ 0, V:-B=0o,

(2.12) VxB— laE:—Z(om spx), V-E = e (anv) .

The set of fields describing the behaviour of the plasma must meet the balance
equations written above. Of course, the peculiar properties of the plasma
at hand are accounted for via the introduction of suitable constitutive relations;
2 scheme framing them in a thermodynamic theory is shown in the next
section.
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3. — Constitutive theory.

Standard accounts of plasmas (1¢) assign different temperature fields to
the various constituents. Moreover, the constituents are viewed as heat-con-
ducting viscous fluids, while the effect of collisions are represented by terms
involving relative velocities of the constituents (¥). As we shall see shortly,
these aspects may be embodied in a systematic scheme of plasma as a mixture
of fluids with hidden wvariables.

Basically, a material with hidden variables (*®) consists of a set of response
functions

o=@y, a)

and of a function kb governing the evolution of the hidden variables a through
the differential equation

a = by, 2, a),

where the symbols y, z stand for suitable sets of real (physical) variables and
the superposed dot denotes the relevant material time derivative.

Since the material at hand is a mixture of » + 2 fluid eonstituents, we
assign it the structure of material with hidden variables by identifying y with the
ordered array (03, 69, ..., 67; wt, n®, ..., w*; v, 20 ..., v*; WL, WO, ... %) (%)
and 2 with the ordered array (D%, D¢, ..., Dv; g7, g°..., g”). The hidden
variables a are the ordered array (-1, 29, ..., Z"; 671, @°, ..., @; A1, A, ..., A?)
of the symmetric second-order traceless tensors £*, of the scalars ©* and of the
vectors A*. Finally the response functions ¢ are identified with the ordered
array (p 9% .., 95878, 8% o, 80 T, T, T gty @ oy @5 678 80, o, 075
P4y pY ..., pr; &1, 8, ..., &), where s* is the entropy and y*=&*— f2s* is
the free energy.

To go further we need some assumptions on the evolution function A. In
principle, we could examine hypotheses general enough—see, 6.g., ref. (1*)—;
however, both to avoid inessential formal difficulties and to get a theory
providing the most direct generalization of Navier-Stokes’ and Fourier’s laws,

(1%) See, e.g., A. N. KavrmaN: Dissipative effects, in Plasma Physics in Theory and
Application, edited by W. B. Ku~nkeL (New York, N.Y., 1966).

(1) See, e.g., P. C. CLEMMow and J. P. DouveHERTY: Electrodynamics of Particles
and Plasmas, sect. 5 and 6 (Reading, Mass., 1969).

(%) The reader interested in a more refined approach to materials with hidden variables
is referred to ref. (39).

(19) Of eourse, owing to the principle of material-frame indifference, the response func-
tions ¢ and the evolution function h should depend on »* and W only through the
differences v*— v8, Wa— W8, o, f=—1,0, ..., »,
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we choose the function  so as to make, for any fixed particle X¢, the evolution
equations into the system

1 ,
(3-1) Ble= = (D% — 24,
o1 ) .
(3.2) @“=F(trD“—@“),
\ 1
(3.3) A= F(g“—"A“) y

where (D*) = D*— } (tr D#) I. The positive parameters 7%, ¥, v¥ may be viewed
a8 relaxation times.

In connection with the evolution equations (3.1)-(3.3), we observe that
sometimes the material time derivative is replaced with an objective time
derivative like, for example, the co-rotational one. Setting aside any question
about objectivity and objective time derivatives (®), we remark that the re-
sults of this section are independent of the choice of the time derivative, while
quantitative differences may arise in connection with wave propagation (21).

The set of response functions ¢ must satisfy the restrictions placed by the
second law of thermodynamics. To make this fact operative, we take that the
inequality

z [s\a+ soiéot_l_ V- (ga) Q;‘Ra] >0

holds at any point of the mixture (*). Then, on account of (2.7), (2.10), this
implies that

(3.4) ZB [ nEme(y'e —I—s“ﬂ‘u)_-—qa g%+ Tz Do Ts.Wo - g
+ Grsxfx acew"v“'E] >0

must be true identically. According to our constitutive assumptions, the free
energy y* of the o-th constituent is given by a function of the form

=20, ..., 0 0 L, e o L o L L, W
—1 « — v, _ Py .
Z1, ., Z0,.,0° A A

Hence, in view of the evolution equations (3.1)-(3.3),the entropy inequality (3.4)

(2°) See, e.g., I'. Bamp1 and A. Morro: Found. Phys., 10, 905 (1980).
(*) F. Bampi and A. Morro: J. Phys. 4, 14, 631 (1981).
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may be expressed as

1 P
(35) z z_ . nama(wga + szx 60:,3) B\p + T_: 60‘,3___%“7)1,0! y‘%a o n may-gt,[ +
~ F 0 A L4
& &© &, . 1 & AKX namu 23
+%ﬁ% m W"AI),D’S—(%QI s ﬁ+ Te y)AB) ‘g5~
& me % g o &
— MY 0P — nEmE e WP T’f pge TP 1 ”t;” vEOF & ”:;’” wie- AP -

ne

+ (T*: W* 4 &+ aen*v*-E)§°F (6”‘8"‘ 0P — m?a

o)
— n*m*ygp(v™ — vP) - gf — n*m*yl(v* — vP)-Unf —
—n*m* s [(v* — vP) - V]vP — n*m* e [(v* — vP) - VWP —
— w*m*yde [(v* — vP) - VIZF — n*m*y&e(v® — vf)-VEF —

e (0" — o) .VW} >0,

where the subscripts 65, nf, vs, W5, 28, @8, Af denote partial differentiations
and 6% is the usual Kronecker delta. Qur purpose is now to exploit ine-
quality (3.5) so as to derive the main restrictions placed by the second law
of thermodynamics on our constitutive assumptions. To do this, we reeall
first that, as always, the present values of the hidden variables «(f) are inde-
pendent of the present values of the real variables 2z(f) (»1°). Accordingly, the
quantities »'# and W'# can be chosen arbitrarily (*2) and independently of
the other variables appearing in (3.5). Therefore, inequality (3.5) holds iden-
tically only if

n*m* n*me
(3.6) 2760‘_ w;’,‘az 0 , ZLG;‘—‘W?VI’: 0 .

Moreover, since Z*(t), @*(t) and A*(¢) are independent of D*(t), g%(¢) and 6'4(z),
De(t), g#(t) are arbitrary, inequality (3.5) implies that

64 nemE
(3.7) §b Z-—Wgw—“il’eﬁ,
1 neE M nEmM
3.8) TE=06° 2-6;[—— P meypin I 4 - = pie - = vee I +

K

1 1
+ 5 mT— ) @ PP+ 5 MY @ (0" —vf) ] :

1 [nem«
(3.9) gf=— (69 25[7 yis + n*m (v — vﬁ>] :

(22) On appealing to the arbitrariness of the external-body forces nfmfFf occurring
in eq. (2.4), the accelerations »'# may be viewed as arbitrary vectors.
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Now, appeal to the arbitrariness of the present values VW5, VZ6, VOS5, VAL
leads to

(3.10) g";:‘"“ (V*— ) Q yhe=0,
(3.11) g";:n“ (0*—vf) ® ¥ =0,
(3.12) g"‘;fw (v — vF)yge=0,

(3.13) g”;l’”“ (" — vP) @ yhs =0 .

Finally, upon substituting these conditions into inequality (3.5), we find
straightaway the reduced dissipation inequality

n* mo
150" +

v

n*me n*m*
g TP %P
‘L_g Y= + Tg ¥a +

+ (T W* + & + aen®v*-E) 6% — nm*(v* — vP)- (Why &%) —

(3.14) zz%[
« B

& & B
— n*m*(v* — vf) - Unfyl —nm? & (—z—ﬁ v&y ;‘fs)] >0.
Thus we may summarize the results so obtained as follows.

Look at a plasma as a mixture of v 4 2 fluid constituents with hidden
variables whose behaviour is accounted for through the constitutive assump-
tions stated above. Then conditions (3.6)-(3.14) are necessary and sufficient
for the identical validity of inequality (3.5). Indeed, the only ¢ part has
been proved, while the ¢f part is obvious.

We end this section with the following remarks.

Remark 1. A doubt could be cast upon inserting the spin tensors W= in
the y-like variables instead of into z-like ones. The insertion of W= info 2,
or possibly into the evolution equations for the hidden variables, should be
suggested by physical arguments. It seems that suggestions in this sense are
not available. Looking at W< ag y-like variable allows T“ to be compatible
with thermodynamics without being identically vanishing and, meanwhile, it
permits us to account for a dependence on W=.

Remark 2. The fields E and B are determined by the quantities Y an®
an®*v* through the Maxwell equations (2.11), (2.12). Nevertheless, we could
g

consider response functions ¢ dependent on the values of E and B as well.

12 —~ Il Nuovo Cimenio D,
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Owing to lack of physical motivation and in order to avoid inessential formal
complications, here we do not account for such a dependence which will be
treated again in sect. 6.

4. — A description of dissipative phenomena in plasmas.

In view of eqs. (3.7)-(3.9), any set of free energy functions ¢*'s meet-
ing inequality (3.14) provides response functions s*, T§, q* automatically
congistent with the second law of thermodynamics in the form of inequa-
lity (3.4). Of course, on the basis of a merely mathematical standpoint, we
cannot prefer any set of functions y* among all those compatible with (3.14).
An important special case compatible with (3.14) is delivered by the ideal-
fluid mixture approximation (*) in which the free energy u* of the oa-th con-
stituent depends on densities and temperatures only through e* and 0*. Beside
this approximation, physical arguments allow us to select a particular class
of free energy functions in that, for any constituent, the ansatz

Pk o4
20~

1 & & X . o llx o &xyg [ 3 *
AN G e R T Lo R Y

7%, (%, %* being real constants, leads to the most natural generalization of Navier-
Stokes’ and Fourier’s laws. To make this assertion precise, observe first that
substitution in (3.7)-(3.9) yields the response functions

L Y L ﬂ_; a. N
(4.2) ¥ = =Wt G A e,
(4.3) Te = —p*I + 29°2* 4 061,

(4.4) q* = —x\*,

where p* = (n*)*m®*y.. is the pressure of the «-th constituent. Now the re-
duced dissipation inequality (3.14) must hold identically. In particular, it
must be true in the case of a process such that, at any time ¢, E = 0, W* = 0,

é* =0, & = 0. In this instance, since the hidden variables are independent
of each other, we achieve the v 1 2 partial inequalities

T_?'{%“-z +7L_E'/'@“@ +T—?1/'A“‘A =0,
whence

(4.5) n*>0, %>0, x>0 .
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The meaning of the parameters %, (%, »* arises from an analysis of stationary
processes characterized by the constancy in time of g* and D=. In such a case
asymptotically we have

Ze=<KD*, ©@*=trD*, A*=g%,

and hence eqs. (4.3), (4.4) become the standard laws of viscosity and heat
conduction. This enables us to identify the parameters %%, (% x»* with the
usual viseosity and heat conduction coefficients and to regard the restrictions
(4.5) as Stokes-Duhem’s and Fourier’s inequalities.

Remark 3. The explicit form of the partial pressure p% namely

w1
20%

1
P = <n“)2m“¥f:a—[n“r:‘z“:2“ + 50567+ A“'A"‘] :
shows that the actual pressure differs from the hydrostatic pressuré (n*)2m* ¥
as to a quadratic contribution of the hidden variables. Accordingly, eq. (4.3)
reduces exactly to Navier-Stokes’ equation in the linear approximation.

3. — Energy and momentum transfer between constituents.

The literature on plasmas bears evidence of particular expressions for energy
and momentum transfer between ions and electrons. Such expressions are
usually suggested by kinetic-theory arguments; hence it is of interest to ex-
amine whether and how they may be embodied into the present scheme of
plasmas as mixtures. ’

Look at nonreacting constituents, i.e. 4* = 0, in the case in which the partial
stresses are symmetric, i.e. T® = 0. The interactions between constituents
then show up as the growths of energy {* and the growths of linear momentum
m” (see appendix A). As usual, we take that m# namely the momentum
transferred to the a-th constituent by collisions with all the other constituents,
may be written as (%)

(5.1) m* = Y M*8(vh — v¥)
8

where

(5.2) > M*s— Mt =0,

&

in view of requirement (A.5). Meanwhile, it is reasonable to assume that the
growths of energy I* involve both differences of temperature and differences
of kinetic energy. Accordingly, set

(5.3) == 3 {207 — 6%) ++  Noo[(v8) — (0%)7]} ;
B
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condition (A.6) requires that

(5.4) >Ee—Kbtxr=0, > Nas— N2 =0 ;
henceforth Ke8, M*s and N*f are assumed to be symmetric.

Congider now the entropy inequality (3.14). The independence of the
growths m? and 1%, and hence &%, of the hidden variables Z*, ©@* and A%, to-
gether with the arbitrariness of the electric field E, the spin tensors W= and
the density gradients E*, allows us to write

(5.5) > &6+>0.
Thus, as shown in appendix B, in the case of constituents at different tem-

peratures, assumptions (5.1), (5.3) are compatible with thermodynamics if
and only if (23)

(5.6) Nob = Mob x - B,
(5.7) S M0, K50, «#B.

Some comments seem to be in order. The contribution of the temperature
diffe ences to the growths of energy has already been investigated in ref. (5),
where the positiveness of the quantity K*# is proved via kinetic-theory argu-
ments. Similarly, kinetic theory accounts for the positiveness of the quantity
M=8. Thus the inequalities (5.7) merely restate known properties. Then the
new result emerging from this section is that, in view of compatibility with
thermodynamies, growths of energy and growths of linear momentum are
interrelated through conditions (5.6). Thus the presence of growths of lin-
ear momentum implies the presence of growths of energy. If, however, the
constituents are at a common temperature, relation (5.6) is no longer a con-
sequence of thermodynamics; that is why usually N*8 is assumed to vanish.

6. — From plasma physics to magnetofluidodynamics.

Magnetofluidodynamics deals with the motion of conducting fluids. As
such, it may be viewed as limit of plasma physics under the approximation
of high density. On the other hand, conducting fluids, or dense ionized gases,
are characterized by a high collision frequeney. In this regime, under the
action of applied fields, electrons and ions move in such a way that there is
no separation of charge (i.e. >an® ~ 0). Basically we may summarize the

(23) We remind the reader that the diagonal terms of the matrices N, M, K have no
physical meaning.
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effects of high collision frequency by saying that the motions and the tem-
peratures of electrons, ions and atoms nearly coincide (i.e. u*~0, §*~#0),
while the net effect of ionization vanighes (i.e. é*~ 0) and the densities of the
constituents are subject to the condition (24)

. = p— , a.___ -
(6.1) n=n"~na'gn n*= 0, >2

On the basis of these observations, we move on to set up suitable equa-
tions for magnetofinidodynamics starting from equations of plasmas as mix-
tures of fluids. Consider first the continuity equation (2.1). If we let o= > n*m?,
summation over a gives *

(6.2) 0+ oV'v=0,

where v = > n*m*v%/p is the mean velocity and the superposed dot stands

for the corresponding material time derivative. According to the above con-
siderations, henceforth we approximate the mass density »*m® and the velocity
v* with ¢ and v. Look now at the balance of linear momentum (2.4) and sum
over «. On account of (2.5), (2.9), we find that

(6.3) 0b =V-T+ JxB+ oF,

where T = Y T* is the total symmetric stress and J = ¢ > n*v* is the electric

24

current. It is worth remarking that, besides occurring in eq. (6.3), the electric
current J satisfies a generalized Ohm’s law which extends Spitzer’s one (4)
to the case in which neutral atoms are present. To this end, we observe that
multiplication of eq. {2.4) by ae/m* and summation over o provide

e (B ) (8- £)r

m'  me m' m
1 1 net fv'  °
ey —f— —_—
+ ne (m‘ m°)E+ p (m‘ me)XB.
Moreover, express the forces p' and p° via eq. (5.1), namely

ﬁlz Mie(ve_ ’D‘) + Mla.(vs._ vi) , I“,e____ Mie(vi o ,ve) + Mea(v&_ ve) .

Therefore, on assuming that the coefficients M, M** are simply proportional

(#Y) To avoid misunderstandings, in this section we denote the constituents by the
indices e (electrons), a (atoms), i (ions) instead of —1, 0, 1.
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to the masses m' and m°, namely M™ = m'y, M** = m®y, and on accounting
for the identity

pon S sm'v L mf) 4= — -,

v v° n 1me—m
T mim e m°m'

in the linear approximation we find that

(6.4)  nf = ne? m+m(E+ va)+

+(M,emm+mm " )J+@m J><B+eV (T‘ Te),

me

since m'v' - mfv°~ (m' - m°)v.

As to the balance of energy, we emphasize that, within the approxima-
tions stated at the beginning of the section, we have D*~D*=D, W*~
~ W*= W for every o, while eq. (2.8) reads > & = 0. Thus the summation

over « of eqs. (2.7) and the use of (2.6), (2.10) yield
(6.8) o¢=poR+J E+T:D—-V-q,

where ¢ = Y n*m®s*[g~ ¢ is the internal energy and q = >q* is the heat

flux. Finally the entropy inequality (3.4) takes the form
(6.6) —o(p + s6) — gq+TD+JE>0

sinece y = Y n*m*y*fo~ y* and s = > n*ms*/p~ s°.

Equations (6.2), (6.3), (6.5), (6.6) are exactly the standard balance equations
of magnetofluidodynamics. Customarily these equations are supplemented by
a constitutive relation for the electric current J. In the present context eq. (6.4)
provides a natural suggestion for such a relation; a comprehensive scheme of
magnetofluidodynamics which embodies a constitutive equation of this type
is delivered in ref. (14).

® % %k
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APPENDIX A

The balance equations governing the behaviour of a reacting mixture may
be derived straightaway from their intergral version—see, e.g., ref. (25). In so
doing, the balance equations for mass, linear momentum and energy take
the form

(A1) me [%‘ + V'(n“v“)] = o,
(A2) 2 (nemeve) + V- (nemevs @ue— o) —msmefe = ms,

LAY %) 2
(A.3) g.z [”ama (eot + '(—1,5)_)] + V- I:/n(xma (80‘ _I__ @2_)_) VE —— (T{X)Tv!x _I_ th] J—
— rnocmoc(fa.va + re) = 1= )
the quantities é, m#,1# being called growth of mass, growth of linear mo-

mentum and growth of energy, respectively. The requirement that mass, linear
momentum and energy are conserved for the mixture as a whole implies that

(A.4) Sér =0,
(A.5) Sme=0,
(A.6) Ste =0.

Equations (2.1), (2.4) and (2.7) of the text are recovered from eqs. (A.1)-(A.3)
through direct calculation. In particular, it results that the growths of mass
are just the mass supplies, while

(A.7) ) i)dz m“——-O“’U“,

In view of relations (A.5), (A.8), conditions (2.5)-(2.8) are completely equivalent
to properties (A.4)-(A.6).

APPENDIX B

Assume the ‘qua,ntities m# and I* to be given by egqs. (5.1), (5.3). On ac-
count of (A.8), we get

Z@é; =3 % 612 {Kaﬂ(eﬂ —6%) + %N«xﬁ [(v8)8 — (0%)2] — M*8(vB — v5) -va} .

(*) C. A, TRUESDELL: Rational Thermodynamics (New York, N, Y., 1969).
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Symmetrize this expression with respect to «, f by interchanging «, 8 and by
adding the resulting expressions together. In view of eqs. (5.2), (5.4) we have

Sgi= 5 33 {menom— 09 (5~ )+ §vos ko — o (— ) +

+ Mes(vs— vr)- (:; %ﬁ)}

Now, owing to the identity

* 8 1 1 1
i o) (3= 2) = § (5 + 35) 02— o+ ST — 01 (7).

we obtain

1 (fx—08)2 1 1 1
25~ §§§{K“5W+ 32+ g )‘””‘_”"’2 +
+ 5 vos — anp(ony — (41— )] -
Thus inequality (5.5) provides (23)
SEKeb>0, > Mbx0, a=p.

& 23

Algso, on applying the Galilean transformation »#-— v# 4 ¢ and appealing
to the arbitrariness of v#— v, 8 — 07, it follows that Nas = Mas (o 5 ff)
if the constituents are at different temperatures, while N«# is completely unre-
stricted if the constituents are at a common temperature.

® RIASSUNTO

Sulla base della teoria delle misture elaborata negli ultimi anni si trattano i plasmi in
maniera sistematica come misture di costituenti fluidi carichi interagenti. La viscositd
e la conduzione di calore sono descritti mediante il formalismo delle variabili nascoste
in modo da rendere ammissibile la propagazione di fronti d’onda. L’analisi della com-
patibilitd del modello con la termodinamica & effettuata considerando la seconda legge
nella forma della diseguaglianza di Clausius-Duhem; come risultato si ottiene uno
schema completo di effetti dissipativi nei plasmi. Per esempio, si mostra che nel caso
di costituenti a temperatura diversa un trasferimento d’impulso & inevitabilmente
legato ad un corrispondente trasferimento di energia. Infine si mostra che, nel caso limite
della ‘magnetofluidodinamica, il fenomeno della conduzione elettrica pud essere inglo-
bato nel contesto degli effetti dissipativi.
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Iogxon, BCHOJL3YIONMI TeOPHIO CMeceil, K IUIa3Me ¢ JHCCHIATHBHLIMH SIBJICHHAMH.

Pesiome (*). — Ha ocHOBe HemaBHO pPa3BUTON TEOpHM CMeEceH ONMCHIBACTCA Ila3Ma CHC-
TeMaTHIEeCKAM 06pa3oM, KaK CMECh B3aMMOICHCTBYIOINUX 3apsDKCHHBIX XKHAKAX KOMIIO-
HEeHT. BA3KOCTD M TENNONpOBOAHOCTE STHX KOMIIOHEHT OOBACHAIOTCA ¢ moMombio dopma-
JIM3Ma CKPHITBIX TNEePEMEHHBIX, 4TO IO3BOJET OIMCATh DPACIpOCTPAHEHHE BOIHOBOLO
¢ponta. IIpOBOANTCA aHATIM3 COBMECTHMOCTH IIPEINIOKEHHOR MOEIH CO BTOPHIM 3aKOHOM
TepMonmuHaAMHUKE B ¢popme HepaBeHcTBa Kitaysmyca-Ilyxema. B pesynepraTe 3T0TO mOIYy-
yaercs MOJHAsA CXeMa JuccHnaTHBHBIX 3ddexToB B mnasme. Hanpumep, moxaseBaercs,
9T0 B Ciyd4ae KOMIIOHEHT HpPH Da3IMYHBIX TeMIepaTypaX NEepeHOC MMITYJIbca HEeH30€KHO
CBA3aH C COOTBETCTBYIOIHM MEPEHOCOM SHEPTHHA. 3aTE€M IIOKA3BIBAETCA, KaK B IPeIeIbHOM
ClTyuyae MardMTHOM THAPOAMHAMEKH IIPOIECC 3JIEKTPOIPOBOTHOCTH MOXET OBITH BKIIOYCH
B paMKd OUCCHIATHUBHBLIX SIBJICHMI.

(*) Ilepesedeno pedaxyueii.



