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Abstract  

An investigation of the vacuum Einstein gravitational field equations for cylindrically and 
axially symmetric space-times is presented which leads to an equivalent differential system 
involving a simple nonlinearity only. The case when this equivalent system is linear is ana- 
lyzed in detail and two methods for generating solutions of the Einstein vacuum equations 
are set up. As a result, in the axially symmetric case the linearity of the equivalent system 
characterizes completely the Kramer-Neugebauer transforms of Papapetrou line elements. 
Accordingly, Weyl solutions are shown to generate exhaustively both Lewis and van 
Stockum solutions. Analogous results are obtained also in the cylindrically symmetric case. 

w Introduction 

In recent years, much effort  has been devoted to an a t tempt  to develop 
methods for generating new solutions of  the Einstein equations from the old 
ones; as a result, a great variety of  such methods are now well established (see, 
e.g., [1] ). In particular, cylindrically symmetric and axisymmetric stat ionary 
vacuum (or electrovacuum) fields have been analyzed extensively (see, e.g., [2] 

and references therein). Also, Harrison [3] and Neugebauer [4] derived a B/ick- 
lund transformation which enabled them to generate a broad class of  axisym- 
metric vacuum space-times, while Belinskii and Zakharov [5] used  the inverse 
scattering problem technique to integrate the equations of  gravity when the 
metric tensor depends on two coordinates only. 

1 The indices a, b take on the values 1 and 2, the signature of the metric is +2, and c = 1. 
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In this paper I aim to examine the Einstein vacuum equations in the case of 
cylindrical and axial symmetry. It turns out that the gravitational equations are 
equivalent, in a natural way, to a differential system which, under suitable 
hypotheses, is linear. Hence, there exists a whole class of space-times, solutions 
to a genuinely nonlinear differential system, which enjoy the remarkable prop- 
erty that they may be calculated through a linear procedure. This feature 
makes possible the construction of two methods for generating solutions of the 
Einstein vacuum equations. As a result, in the case of axial symmetry, it is 
shown that the Weyl line elements [6] generate the whole class of Lewis [7] 
and van Stockum [8] solutions. 

The paper is organized as follows. In Section 2, I review the Einstein gravi- 
tational equations and I set up an equivalent differential system involving a 
simple nonlinearity. The consequences of this system being linear are investi- 
gated in Section 3 and in Section 4 where diagonal and nondiagonal line ele- 
ments are treated separately. In Section 5, I examine the results obtained so far 
by using canonical Weyl coordinates. It turns out that, for axially symmetric 
space-times, the equivalent system is linear if and only if its solutions are the 
Kramer-Neugebauer transforms [9] of Papapetrou solutions [10]. The 
cylindrically symmetric counterpart leads to a similar conclusion. 

w A Differential System Equivalent to the Einstein Vacuum Equations 

Consider the metric tensor in the form 1 

ds 2 = f (z ,  t) (dz 2 - k dt  2) + gab(Z, t) dx a dx b (1) 

where X = +1. Henceforth, I denote the two-dimensional matrix (gab) by g and, 
without loss of generality, I choose the coordinate z so that [ 1 ] 

det g = ~z 2 (2) 

From the physical point of view, the metric (1) represents an axially symmetric 
stationary field when X = -1 [11] and a cylindrically symmetric space-time 
when X = 1 [1 ]. The complete system of the Einstein vacuum equations for the 
metric (1) splits into two sets of equations. The first set consists of a single 
matrix equation for the matrix g, namely, 

(zg, zg-l  ),z - X(zg, tg-l  ),t  = 0 (3) 

a comma denoting partial differentiation. The second set expresses the function 
f b y  quadratures in terms of a given solution of (3) through the relations 

(lnf) ,z = - l + l T r ( ~  - +  4 

1 
(ln f ) , t  = ~ Tr (ZT)  

(4) 

(5) 



where 
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Z = Zg, z g  -1 (6) 

T = g, tg  -1 (7) 

As remarked by Belinskii and Zakharov [5], owing to the identities 

Yr Z = z (ln det g),z, Tr T = (ln det g), t 

the trace of (3) shows that for every nonsingular solution g to (3) (for which, 
in principle, the condition (2) could not hold) the quantity det g satisfies the 
equation 

[z (ln det g),z] ,z - X[z (ln det g),t] ,t = 0 

Using this result, it is easy to check the noteworthy property that the matrix 

= z(X det g ) - l / 2 g  (8) 

satisfies equation (3) as well as condition (2). Thus we are allowed not to worry 
about condition (2) during the calculations and to adopt the simple renormaliza- 
tion (8) of the final result so as to get the correct quantities. 

My purpose is now to derive two first-order matrix equations defining the 
matrices Z and T. The first obvious equation follows from (3), (6), (7), and reads 

Z , z  - XzT,  t = 0 (9) 

The second one is the integrability condition for the relations (6), (7) with 
respect to g, that is, 

Z , t -  zr ,  z -- [ r ,Z ]  (10) 

where [T, Z] = TZ - Z T  denotes the commutator between T and Z. It turns out 
that, once the matrices Z and T are solutions o f  the equations (9), (10), the 
matrix g, defined by the integrable system (6), (7), is solution of equation (3). 
In other words, the system (9), (10) is equivalent to equation (3) via the rela- 
tions (6), (7). 

Some troubles arise in connection with the symmetry ofg  because this 
property is not a consequence of the system (6), (7); to remedy this drawback 
additional requirements on the matrix g must be imposed. For the purpose of 
discussing this point, I let the matrices Z and T be solutions of equations (9), 
(10), and I seek solutions g of (6), (7) satisfying the further conditions 

T g = g T  (11) 

Zg  = g 2  (12) 

a tilde denoting the transpose. The linear system (6), (7), (11), (12) enjoys the 
property that i fg  is a solution also ~ is and so g + ~ is a symmetric solution. In 
view of the assumptions on Z, T, the only nontriv~al integrability conditions of 
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(6), (7), (11), (12) are 
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r, t g -  g r ,  t = o (13)  

T, zg - gT, z = 1 [Z, T lg  (t4) 

Note that the analogous equations for the matrix Z are automatically verified, 
as a direct consequence of (13), (14) via (9), (10). As a final step, consider the 
enlarged system (6), (7), (11)-(14) for the matrix g. This linear system allows 
both g and ~, and hence g + ~, to be a solution, while its integrability conditions 
are identically verified. Therefore the result is that, once the matrices Z, T are 
solutions of (9), (10), it is always possible to find a symmetric solution of (6), 
(7) by imposing the conditions (11)-(14). 

Although this procedure appears to be somewhat involved, almost all steps 
are linear. More precisely, whereas (3) is in general a complicated, essentially 
nonlinear, equation, the only nonlinearity present in the previous procedure is 
due to the term IT, Z]. This raises in a natural way the problem of analyzing 
what happens when [T, Z] = 0, namely, when equation (3) is equivalent to a 
linear system; this problem will be dealt with in the next sections. 

Let me conclude this section with three remarks. 

Remark 1. As pointed out in [5], the renormalization (8) ofg  implies a 
corresponding modification of Z and T, namely, 

= Z + z {ln [z(X detg) -1/2 ] },zI 

T = T+ {ln [z(X detg) -V2]} , t I  

where Z and T are defined in terms offf according to (6), (7) and I is the unit 
matrix. Then Z, T commute if and only if Z, T do so. This confirms the correct- 
ness of accounting for (2) only at the end of the calculation via equation (8). 

Remark 2. Assume IT, Z] = 0 and write the integrability conditions for the 
system (9), (10) with respect to the matrix Z. In so doing, the equation 

(zT, z ) , z  - X ( z T , 0 , t  = 0 (15)  

for the matrix Tis found which is the wave (X = 1) or Laplace (X = - 1) equation 
in cylindrical symmetry. Analogously, looking at the integrability conditions of 
the system (9), (10) with respect to the matrix T yields 

(z-l Z, - X(z-lZ,,) , t  = 0 (16)  

Remark 3. As noted above, the condition [T, Z] = 0 makes the system (9), 
(10) linear so its solutions may be linearly superposed. Now, in view of (6), 
(7), such a superposition results in a change of the matrix g which reflects, in a 
nonlinear way, the original superposition. Thus the problem at hand provides 
a further example of the so-called nonlinear superposition principle. 



LINEARIZATION PROCEDURE FOR SYMMETRIC SPACE-TIMES 

w The Diagonal Case 
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I begin to investigate the consequences of the condition [T, Z] = 0 with 
letting Z and T be diagonal matrices. In this instance, account of (11), (12) 
leads to 

Tllg12 = T22g12, Trig21 = T22g21 

Zug12 =Z22g12, Zng21 =Z2292a 

wherebyglz =g2a = 0 provided either Z u @Z22 or Tn @ T22. In the remain- 
ing case when Zll = Z22, Tn = T2~, equations (6), (7) read 

7,z=z-lZn7,  7,t = Taa7 

3' being any of the entries of the matrix g. The general solution of these equa- 
tions is 

g ; K  exp ~- u , 

where K is a constant symmetric matrix. Thus there exists a constant matrix 
P, with Pfi = I, such that t~gP is diagonal; hence the coordinate transformation 

makes the matrix g into its diagonal form. In conclusion I have proved that no 
generality is lost by allowing the matrix g to be diagonal. 

Owing to the diagonal form of g, equations of Section 2 take on simpler 
expressions. Indeed by putting 

( z 2 e x p ( - ~ )  0 ) 
g = (17) 

0 X exp 

equation (3) becomes 

(Z~,/ z) ,  z - ~ l , t  t = 0 (18)  

while equations (6), (7) are equivalent to two scalar relations defining two func- 
tions, ~" and r, given by 

r =z~,z (19) 

r = ~, t  (20) 

Accordingly, equations (9), (I0) are to be viewed as equations for r and r. 
Remarkably, comparison between (15) and (18) shows that ~ and r satisfy the 
same equation; this suggests the possibility of associating a new solution with 
any solution of (18). Precisely, let ~* be a given solution of (18). The method 
consists in setting 
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and in solving equations (9), (10) to find the function ~. Then, the solution 
sought ~ follows by integrating the system (19), (20). 

As an example, consider the trivial flat space-time solution of (18), that is, 

~ = 0  

FollOwing the procedure indicated above, I find that the solution associated 
with ~ = 0 is 

~k = k In z (21)  

k being a real constant. This is the Kasner-Levi-Civita solution [12, 13] in a 
nonsynchronous coordinate system. This example shows that the Kasner solution 
is in fact insensitive to the value of ~, as previously remarked by Geroch [14]. 
Moreover, in view of the linearity of (18), the solution (21) will always appear 
when searching for new solutions in that ~ is determined up to a constant. This 
may be phrased by stating that solutions of the Einstein vacuum equations for 
the diagonal metric tensor (1) are interpretable as "modulated" Kasner space- 
times (in this connection see [15] ). In view of this, appeal to hereditary proper- 
ties of limits of space-times [16, 17] shows that solutions of (18), (4), (5) are 
at most of type D if k = 1, of type I for every k 4 = 0, 1, 2, whereas this method 
does not provide information in the fiat Kasner case, namely, when k = 0 or 
k = 2 .  

w T h e  N o n d i a g o n a l  Case 

In this section I shall examine the case when the matrices Z and T commute 
without being diagonal. To this end I observe that the matrices 

Z = , T = �9 (22) 
3'r \3's q 

where p, q, r, s, a,/3, 3' are arbitrary quantities, are the most general 2 X 2 
commuting matrices. Thus the problem at hand consists now in solving equa- 
tions (9), (10) when Z and T are given the forms (22). However, although 
equations (9), (10) are linear, it seems that p, q, r, s, or,/3, 3' are not in fact solu- 
tions to a linear system. The following argument will convince us that this is 
not so. 

Write first the matrix system (9), (I0) in its scalar form 

# , z  - k z v ,  t = 0 (23) 

It, t - zv ,  z = 0 (24) 

where p is any of the entries of Z and v is tile corresponding entry of T. As-a 
direct consequence of (22), the pair t~ = P, v = q satisfies equations (23), (24). 
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Moreover, it is easy to show that the pair/2 = r, v = s satisfies equations (23), 
(24) if and only if a,/3, 3' are constants. Indeed, if r, s are solutions to the system 
(23), (24), taking account of (22) implies that a, say, is solution to the system 

ra ,  z - ~kZSOt, t = 0 

Z$Ot,z - YOL, t = 0 

which is equivalent to 

0tz = 0, 0t, t = 0, or a = const 

in that the determinant - r  2 + M2z~ is always different from zero in view of the 
assumptions on r and s. As identical results hold for/3 and % we lose no gener- 
ality by assuming a,/3, 3' to be constants. 

In conclusion, the original problem reduces to solving the linear scalar sys- 
tem (23), (24) for the pairs (p,  q), (r, s) and to constructing the matrices Z and 
T according to the rule (22). Thus, having at disposal the matrices Z, T, solutions 
to (9), (10), it follows from Section 2 that the required symmetric nonsingular 
matrix g may be calculated by a direct integration of the linear system (6), (7), 
(11)-(14). It is worthy of note that I have found here a linear counterpart of the 
genuine nonlinear equation (3). 

The previous results indicate a method of generating a nondiagonal solu- 
tion from any diagonal one. Precisely, let g O  Z o ' T o be a known diagonal solu- 
tion of the system (6), (7), (9)-(14). The method relies on seeking a non- 
diagonal solution Z, T whose diagonal entries coincide with those o f Z  ~ T ~ , 
respectively. Two cases arise. First, ifZ~ = Z~ and T~ = T~ it follows from 
(22) that a = 0. So the desired result is 

~Tr Z2~ ' XTs T~ 

where the pair (r, s) is an arbitrary solution of the system (23), (24) and/3, 7 
are constants. Second, when Z~n r Z~ or T ~ ~ST~ account of (22) shows 
that a 4 = 0 and therefore no loss of generality by setting a = 1. In this instance 
equations (22) yield 

r = Z~, - Z~2=, s = T~ - T~ (26) 

which, in view of the linearity of the system (9), (10) satisfy equations (23), 
(24); this in turn implies that/3, "r are constants. The solution takes again the 
form (25), r and s being given by (26). The final step is to find g when Z and T 
are given by (25) and possibly (26). 

Although more trivial, it should be noted that a diagonal solution may be 
associated with any nondiagonal one. Indeed, as a direct consequence of the 
linearity of the system (23) and in view of (22), given a nondiagonal solution 
Z, T, the diagonal counterpart is obtained simply by  dropping out the non- 
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diagonal entries of Z and T, which is tantamount to putting/3 = 7 = 0. This 
feature ultimately tells us that, when Z and T commute, there exists a one-to- 
one correspondence between diagonal and nondiagonal line elements. 

w Comparison with the Current Approach 

So as to arrive at a deeper understanding of the condition [T, Z] = 0, it is 
convenient to refer the metric tensor to the Weyl canonical coordinates (see, 
e.g., [1] p. 195). In these coordinates the line element (1) reads 

ds 2 = exp ( -2U+ 2k) (dz 2 - X dt  2) + z 2 exp (-2U) (dx 1 )2 

+ X exp (2U) (dx 2 + A dx x )2 (27) 

whereby the explicit form of the matrices Z and T can be calculated straight- 
forwardly. Precisely, defining the new function 

S = - U + �89 In z (28) 

I obtain from (6), (7) the following expressions for Z and T: 

Zt l  = z[z  -1 + 2S, z + X A A , z  exp (-4S)] 

Zt2 = z [ - 4 A S , z  + A , z  - X A 2 A , z  exp (-4S)] 

Z21 = z X A , z  exp (-4S) (29) 

Z22 =z[z  -1 - 2S, z -  X A A , z  exp (-4S)] 

T11 = 2S, t + X A A , t  exp (-4S) 

T12 = -4AS,  t + A , t  - X A 2 A , t  exp (-4S) 
(30) 

7"21 = ~kA,t exp (-4S) 

/'22 = -2S,  t - X A A , t  exp (-4S) 

I am now in a position to draw the consequences of the assumption IT, Z] = 
0. As a direct use of (29), (30) shows, the matrices Z and T commute if and only 
if the condition 

S, z A , r  =S, tA , z  (31) 

holds. Hence, since both S and A depend on z, t only, it turns out that S and A 
must be functionally dependent, that is to say, 

s = S(A) (32) 

On account of (32), from the (21) and (11)-(22) components of the field equa- 
tions (9) (cf. also [1], pp. 198 and 223) one learns that 

exp (4S) = -XA 2 + C1A + C2 0 3 )  
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while it follows from (29), (30), (33) that the constants C1, C2 appearing in 
(33) satisfy the equations 

Zn  - Z22 = 3.CAZ21, Za2 = kC2Z21 (34) 

Tn - T22 = XCI T21, Ta2 = )tC2 T21 (35) 

Ag a result, the condition (33) is completely equivalent to [T, Z] = 0. This, in 
turn, implies that, in the instance )t = - 1, all solutions to the linear problem 
(6), (7), (9)-(14) are the Kramer-Neugebauer transforms [9] of Papapetrou 
solutions [10], whereas the case )t = 1 constitutes the cylindrically symmetric 
counterpart. 

Finally, it is worth commenting briefly on the method, described at the end 
of the previous section, which allows nondiagonal and diagonal solutions to be 
related to each other. In essence, a straightforward inspection of (29), (30) 
leads to the following conclusions. First, let Z~ = Z~ T~ = T~ (and hence, 
necessarily, Zn  = 1, Tn = 0, which correspond to the Kasner type-D space- 
time); then, in view of the arbitrariness of r and s, for every ~b solution to equa- 
tion (18), the relation 

f e x p  (-4S) dA = )tO (36) 

provides the function A = A(z, t). Of course, owing to equation (33), the left- 
hand side of (36) is a known function ofA. Second, let Z~ :~ Z~ or T~ 
T~ ; in this case, representing the diagonal solution by means of equation (17), 
it follows that the functionA is given again by (36), where ~ is now fixed 
through the condition (17). 

A noteworthy consequence of this analysis is that diagonal solutions generate 
the whole class of metric tensors for which IT, Z] = 0. In particular, introducing 
the quantity h = 46'2 - C~, in the case )t = - 1 such a class collects together Weyl 
(h < 0), Lewis (h > 0), and van Stockum (h = 0) solutions (cf. [1], p. 204). 
Therefore the conclusion is that Weyl (diagonal) solutions generate both Lewis 
and van Stockum solutions, thereby generalizing a previous result by Tanabe 
[18]. An analogous conlcusion is arrived at when 3, = 1. 
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