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The role played by objectivity in continuum physics is reexamined in an attempt 
to establish fully its deep conneetion with elassicaI and relativistic time deriva- 
tives. The way of  distinguishing one element in the class of  objective time de- 
rivatives may depend on the particular problem of  interest; this is emphasized 
in Conjunction with material relaxation phenomena described via hidden variable 
evolution equations. 

1. INTRODUCTION 

The principle of objectivity has drawn the attention of many researchers in 
the last decade. Basically, the growing interest in this topic may be explained 
by the following observations. As the literature concerning continuum 
mechanics shows, severe restrictions are placed by objectivity on the form 
of  constitutive equations (see, e.g., Ref. 1, Part A, Ref. 2, Part II, Chapter I). 
Even in view of this fact, extreme care must be exercized in the elevation of an 
accepted rule to the peerage of  a fundamental principle. (a~ Moreover, while 
in classical mechanics a unique statement is agreed upon, as yet there is no 
such unique formulation in relativistic physics. 

One of the points to emerge from this paper is the deep connection 
between the principle of objectivity and objective time derivatives. In 
synthesis, this connection may be outlined as follows. First, in classical 
mechanics the mathematical formulation of the objectivity principle yields 
unambiguously the class of objective time derivatives. Furthermore, in 
relativity the interrelation is made evident by the fact that proper statements 
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of the principle distinguish relevant objective time derivatives, and vice versa. 
In addition to being an interesting topic on its own, the problem of 

selecting appropriate time derivatives in continuum physics gets its practical 
motivation from the need to describe the macroscopic behavior of materials 
via evolution equations for hidden (or internal) variables. Such is the case, 
for example, of reacting mixtures where each hidden variable represents the 
degree of advancement of a chemical reaction/~) Generally, hidden variables 
may be viewed as averaged global parameters which, in an average approxi- 
mate manner, account for macroscopic phenomena resulting from 
microscopic processes. This idea is made clear by two works of Kluitenberg la~ 
where the Debye theory for dielectric relaxation phenomena in polar fluids 
and Snoeck's relaxation equation in magnets are achieved through the hidden 
variable approach. Magnetic relaxation phenomena in finitely deformable 
ferromagnets are investigated by Maugin, (6) who selects as vectorial hidden 
variable the intrinsic spin of quantum mechanical origin. Hidden variables 
have also been used successfully for describing involved mechanical behaviors 
of continua such as elastoviscoplastic bodies. 17~ Finally, we mention that 
recent applications (8-t°l have revealed the hidden variables to be suitable for 
representing viscosity and heat conduction without suffering from the 
unpleasant paradox of infinite speed of propagation arising from the absence 
of relaxation phenomena in the standard theory. 

The plan of the paper is as follows. We begin by surveying the main 
features of objectivity (Section 2). Then, in Section 3, we set up a self- 
contained approach to classical time derivatives. In so doing we emphasize 
the relationship between the invariance under the Euclidean group and the 
mathematical structure of objective time derivatives. Following along 
analogous lines, in Section 4, we characterize the class of relativistic time 
derivatives, which is to be viewed as the direct counterpart of the classical one. 
In Section 5 we point out how purely theoretical arguments cannot dis- 
tinguish any objective time derivative from the others. Accordingly, we 
advocate recourse to experimental checks such as those involving wave 
propagation in materials with hidden variables. Finally, some open contro- 
versial points are discussed in Section 6. 

2. OBJECTIVITY IN CONTINUUM PHYSICS 

it is customarily accepted that a constitutive theory is admissible 
provided it complies with the content of a suitable set of principles (see, e.g., 
Ref. 2, p. 134; Ref. 11, §293; Ref. 12, §4). Among them, the principle of 
objectivity (or material frame indifference) has been recently the subject of 
several papers 13,1a-23) which show how its precise content and range of 
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validity are still a controversial matter. Because of such a controversy, it 
seems worth summarizing here the main themes pertaining to the topic of  
objectivity. 

Look first at the classical framework. In this regard a short but com- 
prehensive history of this principle is provided by Truesdell and Noll 
(Ref. 1, §19). Presently, according to most works in continuum mechanics, the 
principle of objectivity is stated so that constitutive equations must be form- 
invariant under the Euclidean group. This group is a nonfinite group con- 
sisting of all transformations of the time t and of the Cartesian coordinates x i 
in the current configuration such that 3 

x 'i = Q i j ( t ) x  j + # ( t )  
t '  = t + ~ ( I )  

where ~ is a constant, (c 1, c 2, c 3) is an arbitrary point function, and Q~j 
is an arbitrary orthogonal matrix function of the time t. To make the 
meaning of the objectivity statement clearer, designate by objective tensors of  
rank n quantities A i~''i- which transform according to the tensor rule 

A'q ' i~ '  = Qqh  "'" Q~"J, A h ' ' ' ~  (2) 

under the action of (1). So the principle of objectivity demands that con- 
stitutive equations involve objective tensors only. Needless to say, because 
of the arbitrary time dependence of c~(t) and Q~(t) ,  many tensors in the 
ordinary sense are not objective tensors. For example, the velocity vector 
v ~ = ~ and its spatial gradient L~; = vi,5 are not objective; this point will be 
returned to in Section 3. 

Before going further some remarks are in order. Strictly speaking, the 
principle of objectivity involves form invariance under general transfor- 
mations between rigid frames, namely both under the Euclidean group (1) 
and under the arbitrary time-independent change of coordinates within any 
rigid frame. In fact, time-independent changes of coordinates do not introduce 
any difficulties into the problem at hand; hence we investigate objectivity 
topics in conjunction with the Euclidean group through Cartesian coordinates 
only. Yet, in order to account naturally for different behaviors of covariant 
and controvariant components, we distinguish lower and upper indices. 

According to the recent literature on the subject, it seems that the main 
problem is to test the plausibility of the objectivity principle by examining 
the behavior of  material functions such as stress and heat flux. For instance, 
with the purpose of exhibiting real material properties in contrast with 

Latin indices run from 1 to 3, Greek indices run from 0 to 3, a comma denotes a partial 
derivative, a semicolon denotes a covariant derivative. A superposed dot stands for the 
material time derivative. 
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objectivity, Edelen and McLennan (3) considered Burnett's equations Ibr the 
stress tensor and the heat flux. Then they emphasized that, owing to the 
presence of the spin tensor 4 Wij : L[~3-], the contradiction sought is evident. 
Mfiller (13) and S6derholm a~) as well looked for realistic constitutive equations 
through kinetic approaches. They both found that, in the case of a steady 
rotation of a gas of Maxwellian molecules at substantially constant temper- 
ature, 0 = 0, the heat flux q~ takes the form 

qi _ --K(S~J + ~WiJ)O j 

whereby the heat conductivity would be a tensor with a frame-dependent 
skew~symmetric part. Similar effects were obtained by Atkin and Fox (~) in 
connection with polar fluids. 

A counterargument against these conclusions has been given by- Wang, a~) 
who pointed out that kinetic theory cannot provide conclusive statements 
uPon the validity of the objectivity principle. Two reasons follow. First, there 
is no proof that the formal expressions of kinetic theory converge so as to 
justify the leading terms as adequate approximations. Second, there is no 
proof that the limits of the expansions have the same qualitative properties 
as the leading terms, especially with regard to objectivity. But, apart from 
these matters of rigor, as outlined by Wang and investigated in detail by 
Truesdell, the contradictions appearing in Refs. 3, 13, and 14 arise because 
these works do not account completely for Maxwell's consistency theorem, (25) 
which asserts that "the gross fields associated with any solution of the 
Maxwell-Boltzmann equation satisfy the condition of gross balance of mass, 
momentum, and energy." Indeed, the analysis of the restrictions placed by 
Maxwell's consistency theorem (16) shows that, within the scheme adopted 
in Refs. 3, 13, and 14, the pressure deviator (viscous stress) and the heat flux 
must vanish, thus eliminating the aforementioned contradictions. It seems 
then that no argument allows us to cast doubts upon the objective character 
of the material functions. 

This assertion is substantiated also by the literature concerning relativ- 
istic continuum physics in that the objective character of material functions 
is usually assumed. However, relativistic researchers are still debating about 
what the objectivity really is. No one should be surprised by this circumstance; 
the difficulty is due to the lack of a sound generalization of the Euclidean 
group, or the idea underlying it because of the genuine four-dimensional 
structure of relativity. Attempts to obtain a principle of objectivity within 
special relativity have been carried out by Grot and Eringen, Bragg, and 

4 As usual, round brackets denote symmetrization, while square brackets denote skew 
symmetrization. 
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S6derholm. In synthesis, Grot and Eringen (2~) postulated that constitutive 
equations must be covariant under the Lorentz group. Following different 
viewpoints, Bragg (19) and S6derholm (21) introduced definitions of equivalent 
motions and then defined a constitutive equation as objective if the corre- 
sponding value for all equivalent motions is the same. Unfortunately, Grot 
and Eringen's principle does not reduce to the classical one, while to date 
not many consequences of Bragg's and S6derholm's theories have been 
elaborated. 

Valuable endeavors to achieve an objectivity principle in general 
relativity have been performed by Bressan, Maugin, Oldroyd, and Lianis. 
In 1964 Bressan (lv,~8) proposed that constitutive equations must involve 
absolute quantities. In other words, he advocated the exclusive use of 
quantities relative to a reference state, thus extending to relativity Pipkin 
and Rivlin's (2v) and Rivlin's (28) classical statements. By close analogy with 
the classical scheme, Maugin (~9~ asserted that "constitutive equations must 
be invariant with respect to superposition of an arbitrary local Herglotz-Born 
rigid body motion." According to Maugin himself, the motivation for such 
a principle is delivered by the results of its application to constitutive 
functionais. Oldroyd and Lianis faced the question at a more general level. 
Basically, they established an epistemological principle whereby a consti- 
tutive equation describing physical conditions at a neighborhood of a 
material particle contains only information which is irrelevant to the particle 
motion, relative to any observer, and to the particle position in spacetime 
and which can be obtained by physically acceptable measuring operations. It 
is an immediate mathematical consequence of this principle that constitutive 
equations involve space tensors only (see, e.g~, Ref. 26) and that material 
functions are objective. Bearing this in mind, Oldroyd (2°) made the principle 
operative by distinguishing a (convected) coordinate system, and by relating 
objective quantities to such a system (rheological invariance), while Lianis (22) 
fixed his attention on the associated Fermi frame subsequently reduced to 
the proper rigid frame. (23) Accordingly, Bressan's standpoint, too, may be 
viewed within this broader context. 

We adhere to the epistemological principle expressed above. So our 
problem is now to decide about the way of realizing it. Basically, we must 
single out a triad of spatial vectors to which refer the material functions. 
In other words, we must fix the evolution of the triad along the streamlines 
of the body in a manner relevant to accounting for the constitutive properties 
of the material at hand. This point is equivalent to choosing a transport law 
along the flow of the body and hence to selecting a distinguished time 
derivative. That is why the problem of objectivity will be returned to shortly 
after a preliminary analysis of the derivatives both in the classical and in the 
relativistic frameworks. 
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3. CLASSICAL OBJECTIVE TIME DERIVATIVES 

The topic we are going to investigate has aspects which make it inter- 
esting. First, the material time derivative, when viewed as a rule assigning 
to every frame the time derivative relative to that frame, is nonobjective. 
Nevertheless, as we shall see in a moment, the class of objective time deriva- 
tives is very large indeed. Second, objective tensors may be derived from 
nonobjective ones too. Such is the case of the symmetric part of the velocity 
gradient D~j = L(~j). For, according to (1) we find that 

v'i = Qi~v~ + Qi~x~ + ~ (3) 

Hence L'i~ = 8v'i/8x 'j is given by 

L'i~ ~- Qi~Q/L¢~ + O~i~Q~ ~ (4) 

The appearance of (QirXr + ~i and (Qi,,Q~ ~ makes v i and L~ nonobjective 
tensors in that they do not satisfy (2). However, in view of the skew symmetry 
of Q¢~QI, we get the desired conclusion 

D'i~ : Qi~Qj~Dr~ (5) 

together with the transformation law 

w'ij = Q ~ Q / W ~  + O.i~QJ (6) 

for the spin tensor W~j. 
Now, to examine the topic of objective time derivatives in a systematic 

way, it is convenient to premise some general concepts. 
A derivation (~°) 8 of a tensor algebra ~ (considered as an algebra over 

R) is a rule 0: N --~ ~ such that, for every Y, Z e ~ ,  ~, fi ~ R, 

8(o: Y + fiZ) = c~ 8(Y)  + fi 8(Z) linearity 

8 ( Y @ Z )  = 8(Y) @ Z - r  Y@ 8(Z) Leibniz' rule 

If, further, ~ possesses a contraction C, then 8 enjoys the condition 

8(C(Y, Z))  = C(8( Y), Z )  + C(Y, 8(Z)) commutativity with contractions 

On the other hand, a linear operator O, which acts on scalars and (either 
controvariant or covariant) vectors according to Leibniz' rule, may be 
extended uniquely to a derivation of the entire tensor algebra _~, commuting 
with contractions and preserving type of tensors. Then, to save writing, 
henceforth our attention will be confined mainly to scalars and vectors. 
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Let (9 be the algebra of  objective (Euclidean) tensors; any derivation of(9 
with respect to the time is termed an objective time derivative and is denoted 
by a superposed spot. Thus, under the transformation (1), 

Q Jl''" oinjn~Jl'"~n 

for every tensor A ~1"''i- ~ (9. To be operative, we have to fix unambiguously 
the time dependence of objective tensors. Look at a body ~ whose particles 
occupy the region ~ in a suitable reference configuration. Let x ¢ = x~(X K, t) 

denote the position at the time t, with respect to a fixed Euclidean frame of 
reference ~ ,  of  the particle labeled by X = (X 1, X 2, X a) e ~ .  On account of 
the law x': = xi(X, t), every Euclidean tensor A il"''in turns out to be expressed 
by a set of  functions of  the form A ~1"''~- = Ai~'"i , (X,  t)  relative to 5 .  The 
derivative with respect to t, the particle X being held constant, is just the 
material time derivative. The first step toward a characterization of a general 
objective derivative is to define f for any Euclidean s c a l a r f  By analogy with 
the current literature we set 5 

f = / (7) 

As to the spot derivative of a vector A% the most general definition com- 
patible with (7) is 

f t  i -  A i + K%A j (8) 

with respect to every frame ~-. So, for a mixed tensor A~"% -... we find that 

Ai"'s.. .  = A i ' " j . . .  q- Ki~A~'"j . . .  4- . . . .  K~'jAi'"~o... - -  "'" (9) 

which justifies the distinction between covariant and contravariant indices 
and emphasizes that the spot derivative in general does not commute with 
the metric. The time-dependent matrix K% appearing in (8) may be split 
into its objective and nonobjective parts S%. and H% as 

K% = S% + H% (10) 

I t  is the transformation law of the material time derivative which lends 
importance to this splitting. To make this point clear, consider (2) in the case 
o f  a vector and differentiate with respect to t with X held constant. We get 
the relation 

A '~ = Q%AJ + (QisAJ = Q%AJ + (Q~QsvA ~j (1 l) 

In principle one could definer = J' + c~,~, ~ being an objective vector, and develop the 
corresponding more general theory. Owing to the purely academic character of letting 
~ v a 0, we confine our attention to ~ = 0. 



912 Bampi and Morro 

which proves that the material time derivative is nonobjective. On account 
of (11), the requirement of objectivity for the spot derivative, that is, 

and the representation of ~"~ in the new frame ~- '  ,namely 

~, i  = A,~ + H,~jA,j + S,ijA,~ 

lead us to the transformation law 

H,ij  = Qi QflH,p q _ Qi Qjv (12) 

for the nonobjective matrix H~j. The application of the spatial derivative 
e/~x 'k = Qk ~ O/~x ~ to (12) yields 

H'ij,~ ~- Qi~QflQl~H~q,r (13) 

whereby H~q,r is an objective tensor. Returning now to (12), symmetrization 
provides the relation 

H'(ij) = Qfl'QflH(~q) (14) 

which would endow H(~q) with the objective property; to avoid the contra- 
diction between (14) and the splitting (10) we must set H(ij) = 0, whence 

However, skew-symmetric tensors, too, may be objective. In fact, it follows 
at once from (12) that the difference between two choices of the matrix H~j 
is an objective tensor. In addition there are outstanding physical quantities 
which are both objective and skew-symmetric. For instance, if co~j denotes 
the intrinsic spin of particles in micropolar bodies, (~1,a2) the skew-symmetric 
part of the kinematical tensor dij = L~j -- co,~ is an objective tensor. 

Before drawing a few consequences of this general scheme, let us cast 
an eye over objective derivatives customarily exhibited in the literature. Fixed 
a particle X of the body, look first at the co-rotational derivative dr/dt at X, 
that is, the derivative with respect to the frame o% whose origin is always at X 
and whose angular velocity is exactly the vorticity at X. G As is well known 
from rigid kinematics, in such a case 

Qij = -Q~mW"; (16) 

G Although these frames were introduced first by Zaremba (8~} in 1903, the co-rotationai 
derivative is often named after Jaumann. (34) 
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Define now the co-rotational time derivative in the frame ~ by forcing it 
to be objective, namely 

drAJ/d t  = Qi j d , ,A ' i /d t  

Then, on account of (i1) and (16), we find that 

d,,AJ/dt = A : -  WJ~A 7~ (17) 

The expression of the derivative of a mixed tensor may be derived straight- 
away from Eq. (9). It is a routine matter to show that the co-rotational 
derivative of the metric tensor vanishes identically and then raising and 
lowering of indices commutes with dr/dt.  

Another way of finding objective time derivatives is as follows. Let A s 
be a vector field of weight w under the group of all coordinate transfor- 
mations. In particular, consider the transformation from the coordinates X K, 
in the reference configuration, to the spatial coordinates x k of a fixed particle; 
in this instance the components A K and A k are related by 

A x 8 x k / S X  ~c = JwA~ (18) 

where J = det(Sx~/SX~:).  Since the coordinate X K does not change in time, 
application of the material time derivative operator to (18) yields 

A x  Oxk A X  8M': 8 x  ,~ _ j w  { ~At~ 8Ak  .k 8~s 
÷ 8x  ~ OX ~c ~ 8t  + 2~ ~ + w A  - ~ )  (19) 

where 

] = J (Ss : /OxO and 8 ~ k / S X  ~: = (e2k/SxS)(Sx~/OX ~:) 

(see, e.g., Ref. 2, pp. 46, 48). Define now the convected time derivative as the 
objective quantity 

dcA k _ 8 x  k A x 
d t  _ j - w  ~ 

Then, in view of  the result (19), we can write d~A~/dt in terms of spatial 
quantities only, namely 

d~A k 8A :~ 
dt  8t + 5 : A k  (20) £ 

where, as usual, the Lie derivative 5°A ~ is defined by 
X 

8A k 8 ~  
5 f A  k = j : - -  - -  A s + w A  I ~ -  
;~ cOX s ~X s 

8,2 s 

The extension of (20) to the case of mixed tensors is obvious. As an inner 

~X s 
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consistency check, we should verify whether the expression (20) transforms 
tensorially under the Euclidean group (1). A direct calculation shows that 
such is indeed the case. 

We end this section by framing these conclusions within the general 
scheme outlined above. First, different choices of Hij and Sij lead to different 
objective time derivatives. Two cases in point are the co-rotational and the 
convected time derivatives which correspond to Hi3 : -- Wij, S~j = 0 and 
Hij  = - - W ~ . ,  Si j  = --D~j -r  wDkT~gij, respectively. Hence their difference 
involves the objective quantities H~ - = 0, S~ . = - -Dis  + wD~S~j  (cf. Ref. 11, 
§151). On the other hand, it is obvious that, given an objective time derivative, 
the addition of terms depending on the stretching matrix /3~j provides 
objective time derivatives again (cf. Ref. 2, p. 87). These observations could 
suggest that every objective time derivative may be constructed by starting 
from a suitable co-rotational derivative and by adding objective terms. 
Should this be the case, there would exist a nonobjective vector n i such that 
H~j = n~.~l • Of course, this leads unavoidably to the condition H~j,~ = 0, 
which, according to (13), is an overly restrictive requirement on the objective 
quantity H.~-,7~ in that we can choose a skew-symmetric matrix H;~- satisfying 
HEij,k I :/: 0 and hence not corresponding to any co-rotational time derivative. 

4. RELATIVISTIC OBJECTIVE TIME DERIVATIVES 

Relativity does not exhibit any counterpart of the classical Euclidean 
group of transformations. Then, according to the essence of the epistem- 
ological principle of Section 2, in order to describe the behavior of a con- 
tinuous body, we have to choose a suitable material triad which, in turn, 
implies the choice of a transport law. Again, look at a general formulation 
of the problem in such a way that known results are embodied as particular 
cases. 

As pointed out in Section 2, the measuring operations associated with 
the epistemological principle demand that the constitutive equations of a 
continuous body are relations between space tensors. On the other hand, as 
soon as realistic enough descriptions of materials are considered, constitutive 
equations involve time derivatives of some material functions. Accordingly, 
any objective time derivative, when acting on space tensors, must preserve 
the complete orthogonality to the four-velocity field u ~ of the body. In the 
Appendix we derive the structure of time derivatives preserving the spatial 
character of tensors. So we are led to introduce relativistic spot derivatives 
defined on scalars and vectors as 

f = / (21) 
A s = 121 ~ + AB(~u~ - -  u~it~ + K%) 



Objectivity and Objective Time Derivatives in Continuum Physics 915 

where A ~ =  A~;B-'8 and K% is an arbitrary space tensor (K~su~ = O, 

K ~ s u  8 = 0). For  a mixed tensor A ~'''B... we find the relation 

~f~"8-.- = A~"8 .., -t- Aw"e...(z~uv -- u~v -t- K%) q- --. 

- - A ~ " ' , . . . ( ~ , u o  - - u , ~ 8 + K S )  . . . .  (22) 

No matter how the objectivity is set up, the objective time derivatives belong 
to the class 3-  of  time derivatives (21). In other words, any form of the 
objectivity principle ultimately results in the selection of a distinguished 
element (or subclass) of 3-. Consistently with this assertion, commonly 
utilized objective time derivatives must be elements of'~--. In fact, one glance 
at the literature allows us to say that such is the case. Precisely Oldroyd, ~2°) 
Carter and Quintana, laS) and Maugin a2) adopt the derivative 

A= = A s -  u=AB~ _ u ~ A 8 ;B (23) 

usually termed convected time derivative or projected Lie derivative. In 
other papers ~36~ Maugin considers the convective time derivative 

A s  = A~  _ u=ASit~ - -  u=sA  ~ + A~uS;8 (24) 

Also Lianis' investigation, ~ )  involving a triad undergoing a Fermi-Walker 
transport 

,d ~ = A s - u~ABft8 (25) 

shows that the compliance with his objectivity principle leads to the form (23) 
for an absolute vector and to the form (24) for a vector density of weight + 1. 

In passing, we note that the time derivatives (23)-(25) correspond to 
setting 

K~8 = --u~;,,h~8, K~t~ = - -u~;~h~ + u~';,,has, K~8 = 0 

respectively, where h~B = 8~8 -{- u~uB is the spatial projector (spatial metric). 
Within the class ~g', a particular subclass is recommended on geometrical 

grounds. The outstanding property of such a subclass is that its elements 
commute with the process of raising and lowering spatial tensor indices. 
Then the subclass turns out to be characterized by the requirement 

o 

h~ = 0 (26) 

In view of the identity 

~ = u = h ~ +  u~h~v~ ~ 

825/Iolxiii2-7 
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relations (22), (26) provide 

K(~) = 0 (27) 

that is, K~B ---- K~h~ ,  must be skew-symmetric. In particular, the ansatz 

plays a prominent role. In fact, the derivative coincides with the time 
derivative investigated by Estabrook and Wahlquist (aT~ and by Massa (as) 
in connection with the topic of physical flame of reference in general 
relativity, Furthermore, this derivative turns out to be the strict relativistic 
counterpart of the classical co-rotational derivative in that a spatial triad 
e~(i) propagating along the streamlines according to the law 

rotates at the angular velocity of the continuum relative to the compass of  
inertia. 

5. CONCLUSIONS 

On the basis of the preceding analysis, in this section we summarize 
our general viewpoint about objective time derivatives without distinguishing 
classical and relativistic ones. 

From a purely mathematical standpoint, we cannot prefer a particular 
derivative to others on any account. Special physical circumstances, however, 
may make one or another derivative appear preferable. The literature 
concerning involved mechanical behavior of continua bears evidence of  
evolution equations where a suitable objective time derivative replaces the 
usual material time derivative. Within the classical context  this happens 
typically in connection with plasticity. More specifically, in 1952 Truesdell (zg) 
carried out a thorough investigation of the behavior of hypoelastic bodies 
characterized by a stress evolution of the form 

do 
d-t Tij = fi~(DT":l~ ' Tkh) 

Subsequently, researchers considered the use of the co-rotational derivative 
dr~dr, instead of dc/dt, to be preferable for a sounder theory of plasticity. 
For example, the co-rotational derivative is customarily considered by 
Tokuoka (~°) and by Mandel (41) and his co-workers, i t  seems, however, that 
no crucial argument substantiates these choices, q-hen, especially in con- 
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nection with the topic of material with hidden variablesT---governed by 
evolution equations involving first-order time derivatives--the choice of the 
appropriate (objective) time derivative plays a central role. Meanwhile, one 
may ask whether the answer is universal or depends on the continuum at hand. 
As purely theoretical considerations are not conclusive, the best thing we can 
do is to derive consequences from the various choices which eventually allow 
us to select relevant evolution laws of hidden variables. In this connection, 
noticeable possibilities are suggested by the analysis of wave propagation. 
As one might expect, the speeds of propagation and the relations between the 
amplitudes must change somewhat when we replace a time derivative with 
another one. This fact is examined in detail in Ref. 42, where we emphasize 
the new effects of the adoption of the co-rotational derivative in place of the 
material time derivative. 

6. COMMENTS 

Within a purely mechanical classical context, objectivity finds its rigorous 
mathematical statement through invariance under the Euclidean group. 
Troubles arise when dealing with the interaction of the electromagnetic field 
with matter because this field is not covariant even under the Galilean group. 
In order to avoid such troubles, sometimes objectivity is stated in terms of  
time-independent rotations only. (43) 

As a matter of fact, classical objectivity implies that the spin tensor 
cannot enter into constitutive equations because of its non-Euclidean 
invariance. On the other hand, this dependence is really required for a rational 
interpretation of certain phenomena of coupling between electromagnetism 
and continuum mechanics. For instance, the explanation of the Barnett and 
Einstein-de Haas effects relies on the assumption of a linear dependence 
of  the free energy function on the spin tensor.(~a) Accordingly, it seems that 
classical objectivity does not work when electromagnetic effects are involved. 
This should not surprise us at all because electromagnetism is covariant under 
the Lorentz group, so that great difficulties arise when rigid motions are 
concerned. (~5) To overcome this unpleasant feature, our attention could be 
fixed on the relativistic context but, unfortunately, there we will find more 
than one definition of objectivity. 

Once again, the validity of principles, such as objectivity, ought to be 
checked by experiment. I f  tests of some materials s show that the principle 

7 See, e.g., Refs. 8, 9. 
8 Difficulties arising in conjunction with comparison between theory and experiment are 

outlined in Ref. 46. 
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of  objectivity is not valid in certain circumstances, then they are far better 
disproof of the principle than any mathematical result, aS) Yet, beyond 
experimental checks, doubts motivated on theoretical grounds may be cast 
upon the classical formulation of the principle of objectivity. (~7) Also, if 
within a self-contained theory like relativity there is no natural setting for an 
objectivity principle coming out directly from genuine relativistic require- 
ments, then we are led to suspect that the classical realization is merely a 
fortuitous coincidence. 

A P P E N D I X  

For any space vector S ~ (S~u, = 0) the most general time derivative 
preserving the spatial character is obviously given by 

~ = h~o,~ + K % S  ~ ~ , ~  - -  u~SBitB + K % S  B (A1) 

where R e = S~;,u ~, K% is an arbitrary space tensor (K~eu ~ = O, K~Bu~ = 0), 

and h~ = 8"~ + u~u~ is the spatial projector. As usual, we set 

f = f (A2) 

for any scalar f .  So as to extend (A1) to arbitrary vectors we need the 
definition of fla. Now, since S~u~ = 0, we have 

whereby 
o = ( s % )  o = s %  

(A3) 

for some A. For the sake of definiteness we assume that us undergoes a parallel 
transport, whence A = 0. In such a case the spot derivatives commute with 
the process of raising and lowering spatial tensor indices if and only if they 
do so for spacetime tensor indices. 

Look at a triad of space vectors e(f subject to the transport law (A1), 
i.e., ~(o = 0. Set e(~ °) = u~. So we may write 

0(2) = ( u y  - a J  + K~) 4 ") (A4) 

For any vector A m, (A2) yields 

(A~e(,)) ° = (A~e(f)) • 

Hence, on account of (A3), (A4), we find the relation (21) of the text. 
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