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The behaviour of viscous fluids is described through a hidden variable approach which leads to a hyperbolic quasi-linear 
system. Such a system accounts even for transverse weak discontinuities which are shown to be exceptional waves. 

1. Introduction 

Owing to the extensive literature that appeared after the pioneering paper of Coleman and Gurtin [1] in 
1967 we have now become accustomed to the use of hidden variables in continuum mechanics. In essence a 
material with hidden variables consists of a set of response functions supplemented by first-order ordinary 
differential equations governing the evolution of a suitable set of '~ariables which account for internal 
(hidden) degrees of f reedom of the material at hand. The hidden variable approach turned out to be very 
fruitful in various contexts--as,  for example, in the theory of wave propagation in heat conductors 
elaborated by Kosifiski and Perzyna [2] - -  and it has been given a formal mathematical structure in a paper 
of Day [3]. 

Encouraged by the great flexibility displayed by the model and motivated by the need for a satisfactory 
account of viscosity, recently one of us [4] at tempted to remove, with recourse to hidden variables, the 
paradox of infinite wave speed in viscous materials. Although this research resulted in a consistent scheme 
of jump relations for strong and weak discontinuities, we still need a comprehensive analysis of the 
hyperbolicity condition of the associated quasi-linear system of first-order equations. It is just the aim of the 
present note to remedy this deficiency by proving that the model of fluids with hidden variables [4] gives rise 
to a hyperbolic quasi-linear system. 

In Section 2 we set up the basic equations describing the behaviour of viscous fluids with hidden variables. 
Next, following throughout  the standard procedure [5, 6], we test the hyperbolicity of the quasi-linear 
system and derive the full set of characteristic speeds (Section 3). The main result to emerge from this note is 
the existence of transverse waves which, in Section 4, are shown to be exceptional waves. 

Notations. Hencefor th  p stands for the mass density, 0 the temperature,  e the internal energy, 77 the 
entropy, 4/= e - 0r / the free energy, T the stress, v the velocity, D the symmetric gradient of velocity, V the 
spatial gradient operator.  A superposed dot denotes the material time derivative, a comma partial 
differentiation; so, for any function ¢, ~ = ~.t + v. V~. The subscripts p, 0 denote partial differentiations. 
Capital latin indices run from 1 to 1 1 while small latin indices run from 1 to 3; repeated indices imply 
summation. 
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2. The quasi-linear system 

Following along the general lines presented in [4] the behaviour of a viscous fluid is taken to be expressed 
through a set of C 2 response functions o" = o'(0, p, a ) ,  where tr = ~O, r/, T), and through the linear differential 
equation 

& = (D - or) i t  (1) 

governing the evolution of the hidden variable a whose values are in the space of symmetric tensors. 
According to (1) the parameter  z > 0 plays the role of the relaxation time. 

The thermodynamic analysis carried out in [4] shows that, letting the free energy function qs be expressed 
as  

ds = ~(0 ,  P) + (~/O){t~a :a  + ~ (tr el)2}, 

compatibility with the second law of thermodynamics---in the form of the Clausius-Duhem inequal i ty--  
yields the restrictions 

#~ ~ 0, 3A + 2#~ t> 0 (2) 

and the constitutive relations 

77 = - ~ o ,  T =  - p l + 2 l ~ a + h ( t r o t ) I ,  (3) 

where p =p2dso. It is a simple matter  to see that if D is time independent  the hidden variable a 
asymptotically becomes D itself. This fact assigns to the parameters #~, A the role of the usual viscosity 
coefficients. 

Fix an orthonormal  frame ex, e2, e3, and now introduce the array 

U A = (/9, V3, Oa, 02, 0, 0/33, 0/11, 0/22, 0/13, 0/23, 0/12). 

Then upon substitution of (1), (3) into the customary balance equations, 

¢ i+pV.  r = 0 ,  p t~-V • T = 0 ,  p ~ - T : D = O ,  

the equations which result and (1) may be cast in the form of a quasi-linear system of the first-order 

A / ixA B 
u,t +~a )Bu,i +ba=0, (4) 

where 

ba=[O'O'O'O'-(PO'q°)-l{2p'°t:°t+A(tr°t)2}'a)3'0/-211'az2'0/-13'a3-3'~'~2] r r ~" r 

For the sake of conciseness we do not write the explicit form of the matrices a i which may be derived 
straightaway. 

3. Hyperbolicity ot the quasi-linear system 

Let  f ( x  i, t) = 0 be a surface in space-time and denote by n = Vf/IVf] its unit normal. For [ = 0 to be a 
characteristic surface f must satisfy the determinantal  equation 

I(a ')Af, i + 8"~f.,I =0.  
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For ease in writing set 

el  = - ( 2 ~ r / p ) a l l - ( A / p ) ( l + r t r a t ) ,  e2 = - (2~r /p )a22- (A/O) (1  +~" tr a ) ,  

e3 - - - -  - -  (2/x/p)(1 + ra33) - -  (A/p)(1 + r tr a), v, = v • n ; 

moreover, without loss of generality, assume that e3 = n. In accordance with the general theory [5, 6] we say 
that the system (4) is hyperbolic if the matrix 

( a t ) ~  n i  = 

v n 0 0 0 0 0 0 0 0 0 0 

• • ,  . . . .  , , . °  . . . .  , . ,  . . . . .  , . . . . .  . . . . . . . .  " . . . . .  " . . . .  ~ ° • • °  

. _ ~ u r  . 4 u r  4uT 
p 0 / p  v n 0 0 p 0 / 0  e 1 ¢2 ¢3 . 0 13 . - " ~ - a 2 3  " - - ' ~ " ~ 1 2  

• , , . ,  . . . . . . . .  . .  . . . . . . . . . . . . .  , . • , .  . . . . . . . . . . . . .  • . . . .  

0 0 v n 0 0 0 0 0 - 2 u / O  0 0 

• ° t * ~  . . . . . . . . . .  • . •  . . . .  • - . ° • • . °  . . . . . .  • . . . . . . . . . . . . . . .  

0 0 0 v n 0 0 0 0 0 - 2U/O  0 

• • , . ° . • • ° , • • • . . ° •  . . . . . . . . . .  ~ . . . .  • . . . . . .  • . . . . . .  , . . . .  

0 - 0 n 0 / n  0 . 0 0 v n 0 0 0 0 0 0 

• . . . . . . . .  • . . . . .  , . . . .  , . . . .  . • . °  . • • . ° ° •  . . . .  • • . ° .  

0 - 1 / x  0 0 0 v n 0 0 0 0 

. . . . . . . . . .  • . . . . . . . .  , . . . .  , . . . . . . . . . .  - . . . . .  • . . , • 

0 0 0 0 0 0 v n 0 0 0 

• . . . . . .  • . ° • . . . . . . . . . . . . . . . . . . . . . . . . . .  • . . . . . .  , 

0 0 0 0 0 0 0 v n 0 0 

0 0 - 1 / 2 x  0 0 0 0 0 v n 0 

. . . .  . . . . . .  • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  • 

0 0 0 - 1 / 2 x  0 0 0 0 0 v n 0 

, . . . . . . . .  , . . . . .  • • • . . . .  . . . . . .  , . . . . . . . . . .  * . . . . . . . . .  

0 0 0 0 0 0 0 0 0 0 v n 

0 

0 

• ° • ° 

0 

0 

admits a complete real set of (i.e. eleven linearly independent) eigenvectors. As a matter of fact, a direct 
calculation provides the following eigenvalues: 

Co=V., m = 5 ;  c~ .=v .+(~ /pr )  1/2, m = 2 ;  CT=V.--(Iz/pr) 1/2, m = 2 ;  

+ / ~  + 1(2/z +A \ /1/2  
CL=V"+,  p" p \  r + 2 / ~ n . a m + A t r a ] ~  ; 

c Z = v . - { ~ , , + l ( 2 ~ + A + 2 t z n . e m + A  tr a )  }1/2; 
p \  T 

where rn is the multiplicity and ffp = pp -po~lp/Tle is the derivative of p with respect to p at constant entropy. 
The corresponding eleven eigenvectors turn out to be linearly independent, thus making the system 
hyperbolic, provided the roots c~ are real• This certainly happens if "r(D:D)I/2< 1; such a condition may 
be phrased by saying that the characteristic t ime (D : D) -1/2 must be greater than the relaxation time 7. 
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Observe that this sort of restriction on the range of validity of the above model  is typical of any macroscopic 
theory. 

Two remarks  are now in order. First, as we expect it to happen,  in the limiting case of vanishing viscosity 
only three different eigenvalues occur, namely 

Co = v, (m = 9), CLV,+ + (/~o) 1/2, CZ = V, -- (po) 1/2. 

Second, the eigenvalues cr  ~, c~ tend to infinity as z ~ 0 .  This feature is consistent with the fact that the case 

z = 0  corresponds to Navier-Stokes '  law which, as is well known, forbids wave propagation at finite 
speed. 

4. Exceptionality of the transverse waves 

In this section we analyze the evolution of the waves propagat ing at speed c ~- into a constant state; in such 
a case ~ = 0 [4]. In general every eigenvalue c~- is associated with two right and left eigenvectors r A, l~,, 
namely 

(r~)l = (+ p(p~/~)i/2K, K, 1, O, -y-(pn./ no )(Pz/~) ~/2K, -Y (P/~r) ~/2K, O. O, ~ ½(p/~r) 1/2, 0, 0), 

(1~,)1 = (0, 0, ½, 0, 0, 0, 0, 0, =1: (/~'/'/~) 1/2, 0, 0), 

(rA)2 = ( ± p(p~'/ tz )l/2H, H, O, 1, :t: (p~To/ rlo)(Pr/ tz )X/2H, ~ (p/ iz~')l/2H, O, O, 0, ~: X(p/ tz~')l/2, 0), 

(l.~)2 = (0, 0, 0, ½, 0, 0, 0, 0, 0, q: (p.'r/p) 1/2, 0), 

K = 2r{1 - (p~'/lx)(~. + ((2/~ + A)/z  + 2/xn • a n  + A tr a) /p)} - 1~ 13, 

H = 2~'{1 - (pz/p.)(fio + ((2/z + A)/~" + 2/zn • t~n + A tr a ) /p)}  - 1~23, 

where the arbitrary constants are so chosen as to make  the or thonormali ty  condition true. Here ,  the 
subscripts 1, 2 distinguish the two propagat ion modes corresponding to the possible polarizations of the 
transverse waves at hand. Letting IA, r A correspond to the same propagat ion mode,  the rays for the system 
(4) are the curves x i= xi(t) defined by [5, 6] dx l /d t  = A i with A i =  lA(ai)Ar 1~. 

The general relation governing the growth of a weak discontinuity shows that the exceptionality of the 
wave is ensured by the vanishing along the rays of the quantity [6, 7] 

N = {DQ(la(d)A)}of,,rOor ~ + {DQ(ln)}oftrOor~, 

where a subscript o indicates that the corresponding quantities are evaluated in the unperturbed state and 
D o  denotes  the derivative opera tor  with respect  to the field variables u o. In the present  case, owing to the 
transversality of the wave, a straightforward calculation yields the result N = 0 which implies that the 
transverse waves are exceptional. 
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