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In recent years much attention has been drawn to the Korteweg-de Vries equation
(KdV); in this respect an exhaustive account is exhibited in the review article by
Miugra (1). At least two reasons explain the importance of the KdV. First, the KdV
turns out to be a significant approximation in a large class of physical problems like,
for example, ion-acoustic waves in plasma, magneto-acoustic waves in plasma, the
anharmonic lattice, longitudinal dispersive waves in elastic rods, thermally excited
phonon packets in low-temperature nonlinear crystals (2). Second, the KdV admits
particular solutions, termed solitons, whose exciting properties determine an increasing
interest in fhe literature (}). In spite of being widely investigated, in our opinion the
KAV deserves further attention as o its physical relevance especially in connection
with the earliest problem of water wave propagation. Such an analysis is in order
particularly because the various derivations of the KdV look as formal derivations
where the mathematical aspects hide the physical ones.

It is the purpose of this note to shed light on the physical approximations which
are at the basis of the KdV and, meanwhile, to show an approach like that of Sv and
GARDNER (1) allows us to give a precise interpretation of the procedure followed by
Korteweg and de Vries themselves (°). The starting point is the set of equations attained
by Green and Naghdi(®); this avoids ad hoc corrections to the usual shallow water
theory (*) or formal expansions with respect to the vertical co-ordinate (7).

By analogy with Korteweg and de Vries’ paper, try to find the evolution equation
of a solitary wave propagating along a canal with a flat bottom. To this purpose we
make the guess that the behaviour of the actual wave may be expressed through a
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suitable correction of the fundamental wave governed by the differential equation

P+ cpr =10, co = (gho)t,

where ¢(y, {) is the actual height of the fluid in the place y at time ¢, , is the equi-
librium height and subscripts denote partial differentiation. Accordingly it is conve-
nient to work in the frame of reference (r.?) at rest with respect to the fundamental
wave, namely

r = y—cyt, t=t.

Borrowing from Su and Gardner we account for long waves slowly varying in time
by introducing the ordering parameter ¢ and the new variables

(1) E=¢tx, T =¢ebt.

The parameter ¢, which can be thought of as the ratio of the wave amplitude to hy,
lends a precise meaning to the different weight of the derivatives under considera-
tion; for example, g, = O(e¥) while ¢, = O(e¥). Moreover it is worth remarking that
the choice of the exponents § and § in (1) is the only one leading to reasonable results (8).

The behaviour of the fluid is assumed to be described by Green and Naghdi’s equa-
tions which may be cast in the form

(2) P+ (up)y =0, Uy & uuy + @ Py =0,

where « is the horizontal component of the velocity and P = ¢¢*/2 - ¢2¢/3 (%). In
terms of & 7t eqs. (2) can be written as

epr + (W —co)gs + pus = 0, eur + (u—co)ug + ¢ Pe=0.
Then, in view of the formal expansion of ¢, » around the equilibrium values h,, 0, that is
@ =hy+ e’ + 29" + ..., w=¢eu + e2u" + ...,

in the first order of approximation we find that

uf = 2 P
N g £
whence
i Co ’
(3) w=—(¢+8.

ho

From a purely mathematical point of view § is an arbitrary function of time. To get
a strict connection with Korteweg and de Vries’ procedure we let § be a small arbitrary

(*) A. JEFFREY: Z. Angew. Math. Mech, 58, T38 (1978).
(*) F. BaMp1i and A. MORRO: Nuovo Cimenlo, C, 1, 377 (1978,
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constant though at least two reasons suggest to set f = 0 (1°). Then, on account
of (3), the next order of approximation and some algebraic manipulations yield the
desired equation

3¢ ¢ 1
4 <p2+2—h;’w'¢é+iﬁ¢é+g%h3¢§ss=0
which reduces exactly to the original form of the KdV in terms of x, ¢ once we set
ep' =n and €8 = a.

Some remarks are now in order about peculiar aspects of the KdV. Observe first
that, although any differential equation formally equivalent to (4) is acceptable in a
mathematical context, the same is not true in a physical context because the significant
unknown function is fixed at the outset while the independent variables are z, ¢ or any
pair of co-ordinates related to z, ¢ by a Galileian transformation. Among the Galilean
frames, (x, ¢) and (y,t) appear to be clearly privileged. In such frames eq. (4) becomes

(5) L 0
o1 T = ¢ exx =
e 20, NN o Ny g oo 7,
and
3¢ ¢ 1
(8) "it‘}”2—};’7’7z+h—o(ho+ “)ﬁx+écohﬁ’721x=0’
0 0

respectively. In so doing we take it that # is invariant under Galilean trans-
formations; this requirement is consistent wich the properties of the starting
equations (2) which have been derived from the energy balance just through the use
of Galilean invariance. On the contrary, Galilean invariance cannot hold for some
alternatives to the KdV, namely Benjamin-Bona-Mahony and Jeffrey equations (1),
concerning wave motion in fluids.

Often it is claimed that an expression of the KdV like (6) may be achieved by
applying to (5) the transformation

=7, t—>1t, n—>n+ %h,.

This emphasises how fhe eounterpart of a non-Galilean transformation, that is the
replacement of x with x, is the introduction of the unphysical quantity 5 + 2h,/3 (1).

Finally, look at the term 5y, which is responsible for dispersion of waves and, in
the present context, it follows directly from the term ¢*¢ occurring in Green and
Naghdi’s theory. More precisely, the dispersive term 7,y is originated by the gradient
of the vertical acceleration, ¢, thereby showing that the dispersive effects arise as soon
as the theory accounts adequately for the vertical motion of the fluid particles. This
observation makes it obvious the fact that the shallow water theory, disregarding the
vertical acceleration, is not a proper starting point for deriving the KAV as it appears
in Su and Gardner’s paper (%).
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