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In  recent years much attention has been drawn to the Korteweg-de Vries equation 
(KdV); in this respect an exhaustive account is exhibited in the review article by 
MIURA (1). At least two reasons explain the importance of the KdV. First, the KdV 
turns out to be a significant approximation in a large class of physical problems like, 
for example, ion-acoustic waves in plasma, magneto-acoustic waves in plasma, the 
anharmonic lattice, longitudinal dispersive waves in elastic rods, thermally excited 
phonon packets in low-temperature nonlinear crystals (2). Second, the KdV admits 
particular solutions, termed solitons, whose exciting properties determine an increasing 
interest in the literature (~). In  spite of being widely investigated, in our opinion the 
KdV deserves further at tention as to its physical relevance especially in connection 
with the earliest problem of water wave propagation. Such an analysis is in order 
particularly because the various derivations of the KdV look as formal derivations 
where the mathematical aspects hide the physical ones. 

I t  is the purpose of this note to shed light on the physical approximations which 
are at the basis of the KdV and, meanwhile, to show an approach like that of Su and 
GARDNER (4) allows us to give a precise interpretation of the procedure followed by 
Korteweg and de Vries themselves (5). The starting point is the set of equations attained 
by Green and Naghdi (6); this avoids ad hoe corrections to the usual shallow water 
theory (4) or formal expansions with respect to the vertical co-ordinate (5.7). 

By analogy with Korteweg and de Vries' paper, try to find the evolution equation 
of a solitary wave propagating along a canal with a flat bottom. To this purpose we 
make the guess that  the behaviour of the actual wave may be expressed through a 
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s idera t ions  a b o u t  dispersion. 
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suitable correct ion of the  fundamenta l  wave  governed by the differential  equa t ion  

q~t -]- Coq~x = 0 ,  c o = (gho)i , 

where ~(y,, t) is the  actual  he ight  of the fluid in the  place Z at t imc  t, ]~0 is the equi- 
l ibr ium height  and subscripts  denote  par t ia l  differentiat ion.  Accordingly  i t  i,~ conve- 
n ient  to work in the  f rame of reference (x. t) at  rest  wi th  respect  to the fundamen ta l  
wave,  namely  

x =  7 . - - c o t ,  t = t .  

Borrowing from Su and Gardner  we account  for long waves  slowly va ry ing  in t ime  
by in t roducing  the  order ing pa rame te r  s and the  new variables  

(1) ~ e ~ x ,  ~ = s t t .  

The pa ramete r  e, which can be thought  of as the  rat io of the wave  ampl i tude  to h0, 
lends a precise meaning to the  different weight  of thc  der iva t ives  under  considera- 
t ion ;  for example ,  ~ = O(~ =1) while ~t = O(~-~). Moreover  it  is wor th  remark ing  t h a t  
the  choice of the  exponents  �89 and ~ in (1) is the  only one leading to reasonable results  (s). 

The behaviour  of the  fluid is assumed to be described by Green and Naghdi ' s  equa- 
t ions which m a y  be cast in the  form 

(2) ~o t + (u~) z = 0 ,  ut + u u  z + qJ-~Pz  0 ,  

ffl2 where u is the  hor izonta l  component  of the  ve loc i ty  and P gq~2/2-r  ~ / 3  (9). 

t e rms  of ~, T eqs. (2) can be wr i t t en  as 
I n  

sq~ + (u  - -  Co) q:~ -~- q:u~ = 0 ,  s u r  ~.. (u  - -  Co) u~ ~, ~-~ P~  = 0 .  

Then,  in view of the formal  expansion of ~, u a round the  equi l ibr ium values  ho, O, tha t  is 

= ho - -  ~ '  -t- s -~ ~"  § . - . ,  u = e u '  § s 2 u ~ § . . . .  

in the  first order  of approx imat ion  we find tha t  

whence 

(3) 

r c0 j 
u ~  = 7 - q ~ ,  

u0 

Ur CO 

= ho (v' + ~). 

F r o m  a pure ly  ma thema t i ca l  point  of v iew fl is an a rb i t ra ry  funct ion of t ime.  To get  
a s t r ic t  connect ion wi th  Kor teweg and de Vries '  procedure  we let  fl be a small  a rb i t ra ry  

(8) A.  JEFFREY: Z . . 4 • g e w .  Math .  ~]lech, 58, T38 (1978).  
(9) F .  BA.~PI a n d  A.  MORRO: NUOVO Cimento,  C, 1, 377 (1978L 
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constant though at least two reasons suggest to set fl = 0 (40). Then, on account 
of (3), the next order of approximation and some algebraic manipulations yield the 
desired equation 

3% ~ / c o~ f i c 2 
(4) ~*' + ~ o  ~ ~ + ~ v ~  + ~ o ho ~ = o 

which reduces exactly to the original form of the KdV in terms of x, t once we set 
sq~'= ~ and sfl ~ ~. 

Some remarks are now in order about peculiar aspects of the KdV. Observe first 
that,  although any differential equation formally equivalent to (4) is acceptable in  a 
mathematical  context, the same is no~ true in a physical context because the significant 
unknown function is fixed at the outset while the independent variables are x, t or any 
pair of co-ordinates related to x, t by a Galileian transformation. Among the Galilean 
frames, (x, t) and (X, t) appear to be clearly privileged. In  such frames eq. (4) becomes 

3 %  c o 1 s 

(5) ~ +  ~o ~ + ~o ~= + g~oho~=~ = o 

and 

3% c o 1 
(6) 7, + ~o ~ + ho (ho + ~) ~ + ~ ~o h~ ~..~ = o ,  

respectively. In  so doing we take it that  rl is invariant  under Galilean trans- 
formations; this requirement is consistent wich the properties of the starting 
equations (2) which have been derived from the energy balance just  through the use 
of Galilean invariance. On the contrary, Galilean invariance cannot hold for some 
alternatives to the KdV, namely Benjamin-Bona-Mahony and Jeffrey equations (11), 
concerning wave motion in fluids. 

Often it is claimed that  an expression of the KdV like (6) may be achieved by 
applying to (5) the transformation 

x "-~ Z , t - + t ,  ~ --+ ~ + ~ h o . 

This emphasises how the counterpart of a non-Galilean transformation, that  is the 
replacement of x with Z, is the introduction of the unphysical quant i ty  ~ + 2h0/3 (1). 

Finally, look at the term ~xxz which is responsible for dispersion of waves and, in 
the present context, it follows directly from the term ~ occurring in Green and 
Naghdi's theory. More precisely, the dispersive term Vzxz is originated by the gradient 
of the vertical acceleration, ~z, thereby showing that  the dispersive effects arise as soon 
as the theory accounts adequately for the vertical motion of the fluid particles. This 
observation makes it obvious the fact that  the shallow water theory, disregarding the 
vertical acceleration, is not a proper starting point for deriving the KdV as it appears 
in Su and Gardner's paper (4). 
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