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Summary. A unified account of the most outstanding models for
water wave propagation is given. A first scheme assembles the shallow-
water equations, the Boussinesq equations and the Korteweg-de Vries
equation as particular cases of the Green and Naghdi equations. Instead,
Benjamin-Bona-Mahony’s and Jeffrey’s equations cannot be set in such
a scheme: this is ascribed to their non-Galileian invariance. A second
scheme emphasizes the different peculiarities of the various models through
the corresponding variational formulations. In this context a variational
principle for Green and Naghdi’s equations is set up.

1. — Introduction.

The aim of the present paper is twofold: to provide a unified account of
the most outstanding water wave models and to inspect their variational
counterparts.

These purposes are to be viewed in conjunction with the fact that a gen-
eral theory, allowing for the nonlinear inertia terms and the nonlinear boundary
condition over an unknown surface (1), turns out to be of little handiness for
practical problems. To overcome such a difficulty several approximate models
appeared in the literature; among them we cite the shallow-water theory (2)
and the equations of Boussinesq (3), Korteweg-de Vries (¢), Benjamin-Bona-

) F. Bampi and A. Morro: Nuovo Cimento C, 1, 377 (1978).
) J. J. STOKER: Water Waves (New York, N. Y., 1957).
(®) J. BoussiNesQ: (. B. Acad. Sci., 72, 755 (1871).
) D. J. KortEwEG and G. DE VRIES: Philos. Mayg., 39, 422 (1895).
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Mahony (°) and Jeffrey (). Needless to say, a proper scheme gathering these
models would be profitable both on theoretical and experimental grounds.
Here such a scheme is displayed through Green and Naghdi’s theory (?) by
showing how the various models can be derived from it.

It is a general feature of a variational formulation that, besides giving
new insights into the related theory, it provides a comprehensive syuthesis
of the theory itself. Further, variational formulations may be used as a basis
for numerical computations such as finite and infinite elements (8). In spite
of this, a search for variational formulations in hydrodynamics appears to be
a very hard task merely for lack of a systematic method determining the
Lagrangian density. This point is emphasized in the present paper where we
re-examine the general aspects of a variational formulation and, by means
of a customary procedure, we get a variational principle for Green and Nadhdi’s
model.

In summary, the plan of the paper is as follows. Starting from Green and
Naghdi’s equations, sect. 2 exhibits the shallow-water theory and the equa-
tions of Boussinesq and Korteweg-de Vries as particular cases. The alter-
natives to the Korteweg-de Vries equation, namely the Benjamin-Bona-Mahony
equation and the Jeffrey equation, are examined in sect. 3. Such alternatives
appear not to be particular cases of Green and Naghdi’s model and they turn
out not to be Galileian invariant: it is conjectured that these properties are
each other closely related. The account of the models is then improved by
considering their variational counterparts. To this end, seect. 4 deals with
general remarks about the mathematical procedures which distinguish the
role played by the unknown funetion (velocity potential) from that of the
variable domain (free surface). The problem becomes particularly simple (fixed
domain) in connection with the known approximate models (sect. 5). In the
case of more involved models, such as Green and Naghdi’s model, a variational
formulation may be achieved by using the velocity potential in the Clebsch
form (sect. 6).

Notations. The fluid is moving between the bottom x = xe, + ye,— h(x, ¥) e,
and the free surface x = ve, + ye, -+ 7(x, y, 1) e;, where ¢ is the time and (z, )
belongs to a suitable bidimensional region D. A superposed dot denotes the
total time derivative, subscripts denote partial derivatives, V is the bidimen-
sional gradient operator, i.e. V = (0/0x)e, 4 (/0y)e,. Moreover, ¢ = n + h,
p=(n—h)2, A=y, w=¢. The velocity of a fluid particle is V=% =

(®)) T. B. BexJsamin, J. L. Bova and J. J. Manoxy: Philos. Trans. R. Soc. London
Ser. A, 272, 47 (1972).

(®) A. JEFFREY: Z. Angew. Math. Mech., 58, 38 (1978).
(") A. E. GreeN and P. M. NacuDI: J. Fluid Mech., 78, 237 (1976). See also ref. ().

(®) See, e.g., P. BerrEss and O. C. ZieNnkiewicz: Inf. J. Numer. Methods Eng., 11,
1271 (1977).
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= p -} (1 4 Xw)e,;, where X e[— 1, 1] is the vertical Lagrangian co-ordinate.
The pressure field is p(«, t), while P is the pressure at the bottom, p, is the

atmospheric pressure, and I = f p dz.
—h

2. — Outstanding water wave theories from Green and Naghdi’s.

According to the GN (°) model, the motion of a fluid with constant mass
density ¢ is described by the equations

p+eVv=0,

opv  =—VII+4p,Vyn+ PVh,
(2.1) .

opd  =P—p,— o099,

Troprw=I—%3(P+pleg.

As will be shown in a moment, the significant special cases of (2.1) may be
framed in two main classes. The first class arises out by assuming that the
pressure be identified with the hydrostatie pressure (shallow water). The second
clags concerns models related to flat bottoms, that is h(x, y) = k.

1) Shallow-water theory. The typical assumption of this approximate
model can be expressed as ’

p=o9n—2)+p,.
In such a case obvious integrations yield

P=yggp+rp,, IT= {}o99 + .} -

Substitution in (2.1),, gives

and hence the vertical acceleration of the particles, A + X, vanishes iden-
tically (*). Finally, eqs. (2.1),, become the usual system of nonlinear shallow-

(*) Henceforth we use the following shorthands: GN for Green-Naghdi, B for Bous-
sinesq, KdV for Korteweg-de Vries, BBM for Benjamin-Bona-Mahony, J for Jeffrey.
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water theory, namely

{ n+V{n+re}=0,
(2.2)

v,+ (v-Vio=—gVny.

2) Flat-bottom theories. The assumption h = h, simplifies the GN equa-
tions to

p+eVo=0,
(2.3) .
op¥ = — V(I —p,p),
while
IT—p.p=*%09*® + S 099° .
Observe that the essential consequence of the flatness assumption is the disap-

pearance of the termm P Vh and this ultimately allows the quantity P to be
dropped out from the unknowns of the problem.

i) Boussinesq equations. Equations (2.3) may be written in the equi-
valent form

{ (Pt+v'(¢v}: 0,
(2.3)

v+ @ Vo=—gVp— o Vp—5Vp.
Introduce now the Boussinesq approximation whereby the function ¢ must

appear only through linear terms so that, for instance, ¢ ~ ¢,,. Accordingly
we obtain the B equation in the form

{ ?%‘f‘v’((]?v) =0,
(2.4)

v,+ (v-Vio=—gVp—1h Vg, .
Physically, the Boussinesq approximation is tantamount to negleeting the veloc-
ity of the fluid particles against the propagation velocity of the surface wave
which is approximately equal to (gh,)*.
In passing, we note that the linear counterpart of (2.3) leads to

@i+ hVv=0,

T V= V(P_‘ %hoV(ptt 3

which are just the linear Boussinesq equations.

ii) Korteweg-de Vries equation. Look at the unidimensional counterpart
of (2.1). Precisely, if we assume that the fields at hand depend only on one spatial
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co-ordinate, x say, and denote by u the x-component of v, eqs. (2.1) can
be written as

120" -+ ((Pu)w: 0,
(pu); + (pu* + £), =0,

(2.5)

where & = @2 /3 4 gp?/2. The structure of the system (2.5) allows us to
apply the method of Su and Gardner (*) to derive the KdV equation. Here
some details of proof are given so as to emphasize the basic approximation
related to the KdV equation.

In the linear approximation, (2.5) leads to

(2.6) Pio— JhoPea =10,

which accounts for waves travelling to both left and right with speed ¢,= (gh,)*.
On this observation, consider a wave moving to the right with speed ¢, as
fundamental solution of (2.5). Since the actual wave motion shows dispersive
effects (1t), the presence of derivatives of higher order is needed to get a more
realistic model. Accordingly, introduce a transformation of the independent
variables @, ¢ making — ¢, the dominant variable, namely

§ =ex(@— ¢t)
(2.7

T = g*Vt;

the parameter « will be determined later. It is an immediate consequence of
(2.7) that the transformation of the speed is given by the relation

dz dé

d—t=00+8(1__[7

which eclarifies how the parameter ¢ accounts for the difference between the
actual propagation wave and the fundamental one.

The same parameter ¢ is now adopted as an ordering parameter by assuming
that the functions u, ¢ admit formal expansions with respect to e relative to
the equilibrium state u = 0, ¢ = h,, namely

@ =ho+ ep' 4 29" + ...,
=0+ euw 4+ u"+ ...

(2.8)

) C. H. Su and C. 8. GARDNER: J. Math. Phys., 10, 536 (1969).
(1) G. B. Wurraaum: ILinear and Nonlinear Waves (New York, N. Y., 1974).

(10
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No contradiction arises from the use of ¢ both in (2.7) and in (2.8) in that
perturbing the solution relative to w = 0, ¢ = h, is in fact just the same as
perturbing relative to the fundamental wave provided the amplitude of the
fundamental wave be negligible against the quantity e¢’. In other words,
e must be thought of as small but not infinitesimal.

In terms of & and 7 the system (2.5) becomes

epr + (u— 6o)gs + pud= 0,

(2.9)
ey (w— co)us + ¢~ 1 P = 0.

On the other hand, consistently with (2.8) it is convenient to write Z in the
form

P =P+ P 4 2P} ...
Direct substitution of (2.8) and use of (2.7) yield
Po=1%6h,, P'=cq, P =cp"+ 199"+ Joghy e Mg,
Hence, within the first-order approximation, eqs. (2.9) deliver

up = 22 g
- b
by

whence

w=3te 4 fm),

where f is an arbitrary function. At least two reasons contrast with the case
f# 0. First, quite paradoxically f== 0 allows for the possibility «'s= 0 albeit
@' vanishes identically and vice versa. Second, it is usually assumed that both
#' and ¢ decrease to zero as & — 4 oo. Then, if we let f(7)=0, in the second-
order approximation, eqs. (2.9) give

c ! n i
@i+ 2 h—"w Pe— (Gt — houz) =0,
0

C f C n "
h—o% + hgfp 7 —l— co e e + (Co%— hyug) = 0.
0

By comparison it follows that

’ 3¢ K= ’
‘Pr+2h0¢ §+ Coho & pree = 0



358 F. BAMPI and A. MORRO

which becomes the KdV equation as soon as we choose o= 1; in fact, set-
ting ep’=n and returning to the x, ¢ co-ordinates, we find that

3¢ 1
(2'10) 77t + 00"7% + ’. J"]'ylw + = coh(z)na:mn =0,
2 Ty 6

At last, we may look for the outecome of the transformation

instead of (2.7). In such a case we achieve a hardly interesting result. In fact,
it is an easy matter to show that, following along the previous procedure, we
find merely the equation arising from (2.10) by interchanging 7 and &.

3. — Alternatives to the Korteweg-de Vries equation.

Recently some alternatives to the KAV equation have appeared in the liter-
ature (¢). The search for such alternatives is motivated on physical grounds.
Indeed, a straightforward Fourier analysis of the linearized version of the KAV
equation shows that the frequency w goes as k3 when the wave number &k goes
to infinity. This implies that both phase velocity ¢, = w/k and group velocity
¢,= dw/dk are unbounded as k — co. In other words, the speed of propaga-
tion for the KdV equation is infinite (*2). Conversely, the exact solution for
linearized waves in water of depth h, gives the dispersion relation (3)

w?= gk tgh kh, ,

which shows that ¢, and ¢, decrease to zero as k goes to infinity.

In our opinion, it is just this observation which justifies a search for
alternatives to the KdV equation subject to the requirement ¢, ¢, — 0 as
k—oco. Moreover, the sought alternatives should satisfy further requirements such
as to retain the same behaviour of the KdV equation when k is small enough,
that is w ~ ¢k — ¢,h}k*/6 and to preserve the sign of the velocities ¢, o,.
Here we outline whether, and how, the alternatives proposed in the literature
satisfy the required conditions.

(*2) In connection with this point see, e.g., T. LEvi-Civita: Caratieristiche dei sistemi
differenziali e propagazione ondosa (Bologna, 1931) and appendix A of M. CARRASSI
and A. MoORRO: Nuovo Cimento B, 9, 321 (1972).

(*®) L. Lanxpavu and E. LircHITZ: Mécanique des fluides (Moscow, 1971).
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The starting point for the derivation of the KdV equation is the funda-
mental wave satisfying %,= — ¢,77,. On the basis of this observation, BEN-
JAMIN, BoNa and MamONY suggested to replace the term #.., DY — %ext/Co}
the resulting equation is

3¢ 1
(3‘1) nt+conm+§h_:nnm_6h(2)nxwt:() .

Both KAV and BBM equations involve only first-order derivatives with respect
to time. Then, as remarked by JEFFREY, this implies the unpleasant feature
that the specification of both # and 7, as initial data is not allowed. Further-
more, the linearized counterpart of (3.1) yields the dispersion relation

. (N
P76 F ke
First,
60, 6k
=m0 T ey

and hence ¢, ¢, > 0 as k — co. Second,

1 2 7.3
o =~ ek — g0,k

when k is small. Third, while ¢, does not change its sign, ¢, does.

Both to avoid the change of sign of ¢, and to make it possible the assign-
ment of 7, 5, as initial data, JEFFREY proposed to use twice the approximation
7; == — C47)s, Uhus obtaining the J equation (%) :

3 ¢ 1 ki
(3.2) nt+conw+§mnnm+ganm-0-

The linearized version of (3.2) yields

o (9 + 6hk?i—3
w = ¢, o T O )T 0
’ Rk

Hence,

(9 + 6h2k2)— 3

9 4+ 6h2k2)F— 3
W P77 7 e e=8— 0
" R2Ek(9 -+ 6h2k2)t’

Y , ¢y == 3¢
0

Cp = Cg

whence it follows at once that ¢, and ¢, do not change sign while ¢, ¢, — 0

(14) Called TRLW equation by JEFFREY.
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as k — oco. Moreover,
w = ek — s e, B2 K
when % is small.

At this stage the J equation could seem a model adequate to describe the
propagation of small but finite-amplitude water waves. The following remarks
aim to shed light on the physical signifieance of BBM and J equations. First,
a direct deduction of (3.1) or (3.2), like that given for the KdV equation,
should provide their immediate physical interpretation. Unfortunately, to
our mind such deductions are not feasible. Indeed, the two-parameter trans-
formation

& =ex(x— o),

T=ae’t + bz, Byy>e,

applied to the system (2.5), allows reasonable solutions only if &= 0, thus
leading to the XdV equation.

Second, as a matter of fact, the KAV equation (2.10) is Galileian invariant,
that is to say invariant under the transformation (%)

rx—x— Vt,
(3.3) t —>1,
n—>n.

This is not the case for BBM and J equations.

As a final remark, we conjecture that the previous features of BBM and J
equations are closely connected with one another. Indeed, (2.7) privileges
the quantity z— ¢,f and this is meaningful only if the resulting equation is
Galileian invariant. Furthermore, the nonderivation of BBM and J equations
from GN equations is hardly surprising, since the GN model relies heavily on
the Galileian invariance (7).

4. — Preliminary topics about variational principles in hydrodynamics.
The search for variational prineiples in hydrodynamies is essentially sug-

gested by a twofold argument. First, as happens in other fields, the exist-
ence of a variational principle, besides resnlting in a unification of the subject,

(13) Galileian invariance is considered also by R. M. MiurA: SIAM Rev., 18, 412 (1976)
through the transformation z-—>x— V¢, t—1{, 5-—>n-+ 2h,V/3¢,, which seems to be
suggested by formal reasons. On the contrary, (3.3) is motivated by the fact that the
physical meaning of the scalar quantity » is preserved only if its value is the same in all
Galileian frames.
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may lead to new methods for solving the problem. Second, in connection with
nonlinear wave theories it is desirable to have a technique for distinguishing
between those wave equations that allow for dissipation and those that do
not. On the other hand, it is customary to consider conservative (or nondis-
sipative) those wave systems which admit a Lagrangian density, even if not
in the sense of classical mechanics, thus motivating the afore-mentioned search.

Unfortunately, we are still short of a general routine method for producing
variational principles. The easiest way to see how special the known wvaria-
tional formulations are is to examine them as we do in the next section. Here,
instead, we outline an alternative deduction of standard equations for water
waves by emphasizing the role played by the free boundary of the fluid in the
variational formulation.

On assuming the irrotationality of the velocity field and denoting by
&(x, 1) the velocity potential, that is V(x,t) = VO 4 D,e;, a variational prin-
ciple for a fluid with a free surface may be written in the form (11.16)

7
1)  SJ(D) =0, J(D) :f f(q)t 1 L(VP)2 + 1D+ g2) dzdw dy di,

R

where 7 = 5(w, ¥, 1), h = h(», y) and R is the cylindrical region .DX[i, %.].
Borrowing from Hamilton’s prineiple in classical mechanics the unknown fune-
tion @ is assumed to be fixed at times ?,, {,. On the other hand, owing to
the presence of a free boundary at 2z = 7,  too is an unknown function for
the problem at hand. Thus we are led to consider the differential 8J arising
from a change of @, namely

®—>D+ g, %) = x(t) =0,
and a change of the domain, that is
x—>x -1 oe;, «=0at g=—h.

As a consequence dJ takes the form (7)

SJz_f f(VZcD—[— @) AV +f(q5,+ VD) 4 1 & + g2) wey-ndo +

BE —h oR

—I—f{(V@ 4 @,e,)n+v}ydo,
50

(%) J. C. Luxe: J. Fluid Mech., 27, 395 (1967).
(1) I. M. GerranDp and 8. V. Foumin: Caloulus of Variations, subsect. 37.4 (Englewood
Cliffs, N. J., 1963).

24 - Il Nuovo Cimento C.
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where 02 is the smooth boundary of 2 == RX[— k, ] and (n, ») is the out-
ward unit normal to 9f2. First, if y = 0 and « = 0 at 0Q, 3J = 0 yields the
Euler-Lagrange equation

(4.2) Vi 4+ D,,=0.

Second, the choice y == 0 at 0Q gives

(4.3) D+ VD + 3P4 g2 =0 at e=17.
Then we have

Y =f{(v¢+ ®,e,)-n+ v}y do.
o0Q

Observe that y is required to vanish at the surfaces ¢ = t,, { = #,; thus it is
worth introducing the subset 2’ obtained from 0 by removing such surfaces.
If we now make use of the arbitrariness of y at 2, the condition 8J=0 provides

(4.4) (VO + D.e;) n+v=0 at 2.
In particular, at 2 =7 we have
n=MN-Vn+e), v=—1In, A={Vp+u+1}7F,
and hence (4.4) reduces to
(4.5) D,—n— V- VO =0 at 2=1.

Analogously, at ¢ = — h we have n = u(Vh + e,), v = 0, u = {(Vh)2 + 1}7},
and then (4.4) simplifies to

(4.6) ®,+ Vh-V® — 0 at z—=—h.

To sum up, we have seen that the variational principle (4.1) leads to the well-
known equation of motion (4.2) and boundary conditions (4.3), (4.5), (4.6) for
the water wave problem.

In so doing we have not exploited the boundary condition (4.4) when referred
to the subset X* obtained from X by deleting the surfaces ¢ =7, 2 = — h.
This is because the fluid is usually considered to have infinite extension with
respect to the co-ordinates @, y. If such is not the case, in following along the
above procedure, (4.4) delivers the right boundary condition at X*.

As is well known, the full set of equations of motion is unwieldy in practical
problems. This in turn confines the interest of the variational formulation (4.1)
to theoretfical frameworks. On the other hand, several approximate theories
for describing the fluid motion are now available. Thus the problem is to find,
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if possible, their variational counterparts. This subject is examined in the
next sections.

5. — Some examples of variational prineiples.

This section deals with the variational principles corresponding to the
models outlined in sect. 2, 3. As they stand, some systems of differential
equations seem not to follow from variational principles. Yet, as happens
also in other contexts, a nontrivial change of unknown functions makes the
variational formulation immediate. Note that such ad hoc procedures stress
once again the lack of systematic methods of finding variational principles
in hydrodynamics.

Shallow-water theory. Consider the Lagrangian density
&£ = (n+ h)(D,+ H(VDP)?) + tgn*,

where the unknown functions are the profile # and the velocity potential @.
The corresponding Euler-Lagrange equations are

n: D+ HVP)R4gn=0,
D e +V-A{(n+mnVPt=0.

Boussinesq equation. From the Lagrangian density
L = (+ W) (D + 2V D)) + 2gn*— shy]
we get the Euler-Lagrange equations

n: Q-+ 3D+ gn + fhen =0,
D: e+ V{4 h) VO =0.

Korteweg-de Vries equation. If we let 0, = 35/2h,, the Lagrangian density

1 1 1 1
L = 5 Omet + "2' 006920 + '006:: + 1_2' Oohg(lz + 2%:»6:»)

6!
in the unknown funections 0, y allows us to write the Euler-Lagrange equations

1 x—0.=0,
6: 0o+ €050+ 40000+ %Cohz Yws = 0y

which are equivalent to KdV equation.
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Jeffrey equation. If we let 0, = 3%/2h,, it follows at once that the Euler-
Lagrange equations corresponding to

gt Lag g s LT
3—20w6t+2006m+6000w+12 P (x + 249
are
YA L—0:=0,
11
0: 6m+ coem + Coewem + res Xact =0.
6 ¢

The variational principle for J equation is so established.
The above principles are referred to irrotational motions; nonzero vorticity
motions are considered in the next section in conjunction with the GN model.

6. — Lin-like variational principle for Green and Naghdi’s equations,

‘When looking for variational formulations in continuum physics we have
preliminarly to decide whether the motion is described through Lagrangian or
Eulerian co-ordinates. In fluid dynamies the Eulerian description appears to
be preferable, though further difficulties arise out just in connection with varia-
tional problems. In fact, the crucial difference is that in the Lagrangian
deseription the motion is specified through the position of the particles, whereas
in the Eulerian description it is represented by the velocity field. Thus, while
a natural analogy with particle mechanics is profitable in the Lagrangian
deseription, such an analogy is not available in the Kulerian description.
To overcome this difficulty Lin (%) pointed out that a particlelike informa-
tion on the motion may be introduced through the obvious constraint

. Oa da
a:'é;—f—%"a—xj—oa

o(x, t) being the Lagrangian label of the particle in x at the time ¢. Accounting
also for the constraint related to the mass conservation, Lin’s procedure leads
to the equations of motion as the Clebsch equations (**). Such a procedure
is here applied in connection with the GN model.

Roughly speaking, the column structure of the GN model allows us to
imagine the fluid motion as resulting from the horizontal motion of the columns
and the vertical motion inside the columns themselves. Accordingly, it is

(%) C. C. Lin: Rendiconti S.I.F., Course XXI (New York, N.Y., 1963).
(**) H. Lams: Hydrodynamics, VI ed. (Cambridge, 1932), art. 166.
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convenient to consider an equivalent bidimensional layer obtained by shrinking
the fluid vertically. This is made mathematically precise in the following way.
Let »x = pp be the density of the layer described by the equation

#,+ Ve (ev) =0,
20,4+ #(v-Vyv =-—VII +p Vy+ PVh,

which are an immediate consequence of (2.1),,. On using the obvious identity
(v-V)v = V(}v?) + (VAD)Av
and appealing to the Clebsch potential in the form

v=Vy-+uVo,
we find that

v, 4+ (VAV)AY = V(3 + poy) +uVo—oVu .

Under the assumption g =0, ¢ =0, we can write
®(x:+ pos+ o) =p,
where p = — VII + p,Vy -+ PVh. A direet integration yields
1 -dr
xt+,um+§v2=f%— :

The previous scheme is unified by the following variational principle:

3 J‘ (3xv2— E + y{e,+ V- (3e0)} + o{(zu); + V- (pv)}) dr dt = 0,

i

E being defined by

t

E,,=_fp'dr.

Indeed, the Euler-Lagrange equations are

v: v=Vy+uVo,

w:  $vi— B =y, +v-Vy+ uo,
x:  #e+Ve(ev)=0,

p: =0,

o: unu=90.
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They reduce to the corresponding ones given above through straightforward
algebra.

The motion of the layer is so completely characterized. Of course, to
determine the actual motion of the fluid, use must be done of eqgs. (2.1),,.

% %k %

The research reported in this article was performed in collaboration with
the Laboratorio per la Matematica Applicata - CNR, Genova in connection
with the project « Conservazione del suolo », subproject « Dinamica dei Lito-
rali ».

® RIASSUNTO

8i presenta una trattazione compatta delle pitt note equazioni che descrivono la propa-
gazione delle onde d’acqua. Un primo schema riunisce le equazioni dell’acqua bassa,
di Boussinesq e di Korteweg-de Vries come casi particolari delle equazioni di Green
€ Naghdi. Per contro, l’equazione di Benjamin-Bona-Mahony e quella di Jeffrey non
rientrano in tale schema: c¢ido & attribuito al fatto che esse non sono invarianti per
trasformazioni di Galileo. Un secondo schema mette in rilievo le diverse caratteristiche
dei vari modelli tramite le corrispondenti formulazioni variazionali. In questo contesto
si fornisce un principio variazionale per le equazioni di Green e Naghdi.

Teopusi BOASHBIX BOJH H BAPHAUMOHHBIC TPHHUMIEL.

Pesrome (*). — IlpennaraeTcs equHoe ONUCAHNE MOTEIEH I PACIPOCTPAHEHNS BOASHBIX
BomH. IlepBas cxema ommCHIBaeT ypaBHeHHs MENKOH BOIEL ypasaeHusa byccmEd u
ypaprenue Kopresera-ne Bpuca, xak wacTHble chnydam ypasHenmii I'puma u Haraw.
Vpasuenns bermxamuna-Bora-Maxonn u Jxedpn He MOTYT GbITh TIOJNYYEHB! B TaKOl
CXeMe: 3TO NPHIHUCHIBACTCA HETAMICCBOM HHBAPUMAHTHOCTH STHX ypaBHeHMii. Bropas
CXeMa IPUAACT 0c060e 3HAYeHHE OCOGEHHOCTAM pPA3NMMYHEIX MOJENCH MTOCPEICTBOM
COOTBETCTBYIOIIMX BAPUANMOHHBIX GOPMYIHPOBOK. B 3TOM KOHTEKCTE YCTaHABIHBAETCS
BapUAIMOHHGIA OPpUHIMI I8 ypaBuenwii I'pura u Hargm.

{*) Hepesedeno pedaxyueil.



