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S u m m a r y .  - -  A unified account of the most outs tanding models for 
water  wave propagat ion is given. A first scheme assembles the shallow- 
water  equations, the Boussinesq equations and the Korteweg-de Vries 
equation as par t icular  eases of the Green and Naghdi  equations. Instead,  
Benjamiu-Bona-Mahony's  and Jeffrey's equations cannot be set in such 
a scheme: this is ascribed to their  non-GMileian invariance.  A second 
scheme emphasizes the  different peculiari t ies of the various models through 
the corresponding var ia t ional  formulations. In  this context  a var ia t ional  
principle for Green and Naghdi 's  equations is set up. 

1 .  - I n t r o d u c t i o n .  

The  a i m  of t h e  p r e s e n t  p a p e r  is t w o f o l d :  to  p r o v i d e  a un i f i ed  a c c o u n t  of 

t he  m o s t  o u t s t a n d i n g  w a t e r  w a v e  m o d e l s  a n d  to  i n s p e c t  t h e i r  v a r i a t i o n a l  
c o u n t e r p a r t s .  

These  p u r p o s e s  a re  to  be  v i e w e d  in c o n j u n c t i o n  w i t h  t h e  f ac t  t h a t  a gen-  

erM t h e o r y ,  a l l owing  for  t h e  n o n l i n e a r  i n e r t i a  t e r m s  a n d  t h e  n o n l i n e a r  b o u n d a r y  

c o n d i t i o n  ove r  a n  u n k n o w n  su r face  (1), t u r n s  ou t  to  be  of l i t t l e  h a n d i n e s s  for  

p r a c t i c a l  p r o b l e m s .  To o v e r c o m e  such a d i f f i cu l ty  s e ve ra l  a p p r o x i m a t e  m o d e l s  

a p p e a r e d  in  t h e  l i t e r a t u r e ;  a m o n g  t h e m  we ci te  t h e  s h M l o w - w a t e r  t h e o r y  (~) 

a n d  the  e q u a t i o n s  of B o u s s i n e s q  (3), K o r t e w e g - d e  Vr ies  (4), B e n j a m i n - B o n a -  

(1) F.  BAMPI and A. MORRO: Nuovo  Cimento C, l ,  377 (1978). 
(2) J. J. STOKER: Water  Waves  (New York, N. Y., 1957). 
(3) J. BOUSSlNESQ: C. R.  Aead .  Sci . ,  72, 755 (1871). 
(a) D. J. KORTEWEG and G. DW VRI~S: Phi los .  Mag. ,  39, 422 (1895). 
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Mahony (5) and  Jef f rey  (~). Needless to say, a proper  scheme gather ing these 
models  would be profi table bo th  on theoret ical  and  exper imenta l  grounds.  
Here  such a scheme is displayed th rough  Green and  Naghdi ' s  theory  (7) b y  
showing how the var ious models can be der ived f rom it. 

I t  is a general  feature  of a var ia t iona l  formula t ion  tha t ,  besides giving 
new insights into the re la ted theory ,  it provides a comprehensive synthesis  
of the  theory  itself. Fur ther ,  var ia t ional  formulat ions  m a y  be used as a basis 
for numerical  computa t ions  such as finite and  infinite elements  (s). I n  spite 
of this,  a search for var ia t ional  formulat ions  in hydrodynamics  appears  to be 
a ve ry  hard  task  mere ly  for lack of a sys temat ic  me thod  determining the  
Lagrangian  density.  This point  is emphasized in the  present  pape r  where we 
re-examine  the general  aspects  of a var ia t ional  formula t ion  and,  b y  means  
of a cus tomary  procedure,  we get a var ia t iona l  principle for Green and  Nadhd i ' s  
model.  

I n  summary~ the p lan  of the  pape r  is as follows. S tar t ing  f rom Green and  
Naghdi ' s  equations,  sect. 2 exhibits  the  shal low-water  theory  and  the  equa- 
tions of Boussinesq and Kor teweg-de  Vries as par t icu lar  cases. The alter- 
nat ives  to the  Kor teweg-de  Vries equation,  namely  the  Ben jamin -Bona-Mahony  
equat ion and  the Jef f rey  equation,  are examined in sect. 3. Such a l te rna t ives  
appear  not  to be par t icular  cases of Green and  Naghdi ' s  model  and  they  tu rn  
out not  to be Galileian invar ian t :  i t  is conjectured t h a t  these proper t ies  are 
each other closely related. The account  of the models  is then  improved  b y  
considering their  var ia t ional  counterpar ts .  To this end, sect. 4 deals wi th  
general  r emarks  abou t  the m a t h e m a t i c a l  procedures  which distinguish the  
role p layed  b y  the  unknown funct ion (velocity potent ial)  f rom tha t  of the  
var iable  domain  (free sm'face). The p rob lem becomes par t icu lar ly  simple (fixed 
domain) in connection with  the  known app rox ima te  models (sect. 5). I n  the  
ease of more  involved models,  such as Green and  Naghdi ' s  model,  a var ia t ional  
formula t ion  m a y  be achieved b y  using the  veloci ty  potent ia l  in the Clebsch 
fo rm (sect. 6). 

Notations. The fluid is moving  be tween  the  b o t t o m  x = xel 4- yes--  h(x, y) e3 
and the  free surface x = xe14- yes 4- ~(x, y, t)e3, where t is the t ime  and (x, y) 
belongs to a suitable bidimensional  region D. A superposed dot  denotes the  
to ta l  t ime  der ivat ive,  subscripts  denote  par t ia l  der ivat ives ,  V is the  bidimen- 
sional gradient  operator ,  i.e. V =-- (S/~x) e~ 4- (~/Sy)e2. Moreover,  F = ~] 4- h, 

~ o = ( 7 - - h ) / 2 ,  ~ = ~ ,  w = ~ b .  The veloci ty  of a fluid part icle is V = ~ c =  

(5) T. B. BENJAMIN, J. L. BONA and J. J. MAHONY: Philos. Trans. t~. Soc. London 
Set. A, 272, 47 (1972). 
(6) A. JE~'REY: Z. Angew..Math. Mech., 58, 38 (1978). 
(7) A . E .  GREEN and P. ~ .  NAGHDI: J. Fluid Mech., 78, 237 (1976). Sce also ref. (1). 
(s) See, e.g., P. B~TTESS ~nd O. C. ZIENKIEWICZ: lnt.  J. Namer. Methods Eng., 11, 
1271 (1977). 
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= v + (2 + Xw)e3, where X E [--  �89 1] is the  ver t ical  Lagrangian  co-ordinate.  
The pressure field is p(x, t)~ while P is the  pressure a t  the  bo t tom,  p~ is the  

n tmospher ic  pressure,  and  / / = ; p  dz. 
- - h  

2. - Outstanding water  w a v e  theor ies  f r o m  Green and Naghdi 's .  

According to the  G ~  (9) model ,  the mot ion  of a fluid wi th  constant  mass  
densi ty  9 is described b y  the  equat ions 

~ + ~ V ' v = O ,  

~ = - -  VH + p~ V~7 + P Vh ,  
(2.1) 

~v~ = P - -  p~-- 9g~v , 

§  = H - -  l ( p  + p~)~. 

As will be shown in a moment ,  the significant special cases of (2.1) m a y  be 
f r amed  in two main  classes. The  first class arises out  b y  assuming tha t  the 
pressure be identified wi th  the  hydros ta t ic  pressure (shallow water).  The second 
class concerns models re la ted to flat bo t toms ,  t h a t  is h(x, y ) =  ho. 

1) Shallow-water theory. The typical  assumpt ion  of this approx ima te  
model  can be expressed as 

p = 9g(~7- z) -~ p , .  

I n  such a case obvious in tegrat ions  yield 

P = eg~ -~ p ,  , 

Subs t i tu t ion  in (2.1)3,~ gives 

4 = 0 ,  

11= {~eg~ + p3~.  

~ = 0 ~  

and  hence the  ver t ical  accelerat ion of the particles,  2 @ Xzb, vanishes iden- 
t ically (~). Final ly,  eqs. (2.1)1.2 become the  usual  sys tem of nonlinear shallow- 

(9) Henceforth we use the following shorthands: GN for Green-Naghdi, B for Bous- 
sinesq, KdV for Korteweg-de Vries, BBM for Benjamin-Bona-Mahony, J for Jeffrey. 



WATER WAVE THEORIES  AND VARIATIONAL 1)RINCIPLES ~ 

water  theory,  namely  

(2.2) { v , +  v .{ (v  + h)v} = O, 

v ~ -  (v 'V)v  = - -  gV~ . 

2) Flat-bottom theories. 
tions to 

(2.3) { 

while 

The assumption h ~-ho simplifies the G57 equa- 

~ §  

O ~  = -- V ( / / - -  p ~ ) ,  

Observe tha t  the essential consequence of the flatness assumption is the disap- 
pearance of the t e rm P Vh and this u l t imate ly  allows the  quant i ty  _P to be 
dropped out f rom the unknowns of the problem. 

i) Boussinesq equations. Equat ions  (2.3) m ay  be wri t ten  in the equi- 
valent  form 

{ ~ , +  V.(~v)  = O, 
(2.3') 

v ~ +  (v .V)v = - g v ~ -  ~ v ~ -  ~ ~v~o. 

In t roduce  now the Boussinesq approximat ion  whereby the funct ion ~ must  
appear  only through linear terms so that ,  for instance, ~b ~ Tt,. Accordingly 
we obtain the B equat ion in the  form 

(2.4) { q ~ - V . ( ~ v )  = O, 

v ~ +  (v-V)v = -  g V ~ -  � 8 9  

Physically,  the  Boussinesq approximat ion  is t an t am o u n t  to neglecting the veloc- 
i ty  of the fluid particles against the propagat ion velocity of the surface wave 
which is approximate ly  equal to (gho) ~. 

In  passing, we note tha t  the linear counterpar t  of (2.3) leads to 

Ft~-  hoV.v---- 0 , 

1 

which are just  the linear Boussinesq equations. 

ii) Korteweg-de Vries equation. Look at  the  unidimensional counterpar t  
of (2.1). Precisely, if we assume tha t  the fields at  hand  depend only on one spatial 
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co-ordinat% x say, and denote by u the x-component  of v ,  eqs. (2.1) can 
be wri t ten as 

(2.5) { ~ + ( ~ u ) ~ =  o ,  

(~u)~ + (q~u~ + ~)~ = o ,  

where ~ =  q~2~b/3 ~-gq~2/2.  The structure of the system (2.5) allows us to 
apply the method of Su and Gardner (~o) to derive the KdV equation. Here 

some details of proof are given so as to emphasize the basic approximation 

related to the KdV equation. 
I n  the linear approximation,  (2.5) leads to 

(2.6) q~tt-- ghoc f~  ~-- 0 

which accounts for waves travelling to both  left and right with speed Co ~ (gho) ~. 

On this observation, consider a wave moving to the right with speed e0 as 
fundamenta l  solution of (2.5). Since the actual wave motion shows dispersive 
effects (~), the presence of derivatives of higher order is needed to get a more 

realistic model. Accordingly, introduce a t ransformation of the independent 

variables x ,  t making x - - C o t  the dominant  variable, namely 

(2.7) 
= e~(x -- Co t) , 

T = 8 a + l t  ; 

the parameter  ~ will be determined later. I t  is an immediate consequence of 

(2.7) tha t  the t ransformat ion of the speed is given by  the relation 

dx d~ 
dt --  co ~- s~--~T 

which clarifies how the parameter  e accounts for the difference between the 

actual  propagat ion wave and the fundamenta l  one. 
The same parameter  e is now adopted as an ordering parameter  by  assuming 

tha t  the functions u,  q~ admit  formal expansions with respect to s relative to 

the equilibrium state u ~ O, q~ ~ ho, namely 

(2.S) { ~ = ho -~- e~' + s 2 ~" + . . . ,  

u = 0 -+- eu' § s2u" + . . . .  

(10) C. H. Su ~nd C. S. GA]~])N]~: J. Math. Phys., 10, 536 (1969). 
(~1) G. B. WHITHAM: ~ i n e a r  and N o n l i n e a r  Waves  (New York, N.Y., 1974). 
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~No contradict ion arises from the use of e bo th  in (2.7) and in (2.8) in tha t  
per turbing the solution relat ive to u = 0, q ~ h0 is in fact  just  the same as 
per turbing relative to the fundamenta l  wave provided the ampli tude of the 
fundamenta l  wave be negligible against the quant i ty  e~v'. In  other  words, 

must  be thought  of as small bu t  not  infinitesimal. 
In  terms of ~ and z the system (2.5) becomes 

(2.9) 
{ eq~ + ( u -  Co)q~, + q~u,]= 0 ,  

eu~ + ( u -  Co)U, + q~-~ ~ = 0 .  

On the other  hand,  consistently with (2.8) it  is convenient  to write ~ in the 
form 

�9 ~ : .~o + eg '  + r .~" + . . . .  

Direct  subst i tut ion of (2.8) ~nd use of (2.7) yield 

Hence,  within the first-order approximation,  eqs. (2.9) deliver 

CO ! 

~ = ~o ~ '  

whence 

~ f  = Co ( y  

ho + lO:), 

where ] is an arb i t rary  function. At least two reusons contrast  with the case 
] # 0. First ,  quite paradoxical ly ] # 0 allows for the possibility u ' #  0 albeit  
~' vanishes identically and vice versa. Second, it is usually assumed tha t  bo th  
u '  and ~v' decrease to zero as ~ -~ + c~. Then, if we let ](~) ~ 0, in the second- 
order approximation,  eqs. (2.9) give 

! CO l l 
~v~ + 2 ~ 9 ~v, - (Co(', - ho~,) = 0 ,  

C 2 t ! t! 0 t - -  Co ] C O ,  . 

~ ~ ~o ~ ~ + -3 echo ~2~-1(,~ + ~ tCo~, - ho~,) = o .  

By comparison it follows that 
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which becomes the KdV equation as soon as we choose ~----�89 in fact,  set- 
t i ng  s~0'~-~ and re turning to the x, t co-ordinates, we find tha t  

3 Co 1 2 
(2.10) ~?, + Co~ + ~ ~ ~ -4- ~ coho~?~ -~ O . 

At last, we may  look for the outcome of the t ransformation 

~ ~cr x 

instead of (2.7). I n  such a case we achieve a hardly  interesting result. I n  fact, 
it is an easy mat te r  to show that ,  following along the previous procedure, we 
find merely the equation arising from (2.10) by interchanging z and ~. 

3. - Al ternat ives  to the  K o r t e w e g - d e  Vries equat ion.  

Recent ly  some alternatives to the KdV equation have appeared in the liter- 
ature (~,s). The search for such alternatives is mot ivated  on physical grounds. 
Indeed,  a straightforward Fourier analysis of the linearized version of the KdV 

equation show's tha t  the frequency ~0 goes as k s when the wave number k goes 
to infinity. This implies tha t  both phase velocity cp ~ o)/k and group velocity 

e ~ d @ d k  are unbounded as k - >  o0. I n  other words, the speed of propaga- 
tion for the K dV equation is infinite (12). Conversely, the ex,~ct solution for 
linearized waves in water of depth ho gives the dispersion relation (~3) 

~02 ~ gk tgh kho , 

which shows tha t  c and c decrease to zero as k goes to infinity. 

I n  our opinion, it is just  this observation which justifies a search for 
alternatives to the KdV equation subject to the requirement c ,  c a --> 0 as 
k-+c~. Moreover, the sought alternatives should satisfy fur ther  requirements such 
as to retain the same behaviour  of tile KdV equation when k is small enough, 

tha t  is ~0 ~ c o k - - c o h 2 k 3 / 6  and to preserve the sign of the velocities c ,  cg. 
Here we outline whether, and how, the alternatives proposed in the literature 
satisfy the required conditions. 

(12) In connection with this point see, e.g., T. LEvI-CIVlTA: Caratteristiche dei sistemi 
di]]erenziali e propagazione ondosa (Bologna, 1931) and appendix i of M. CAI~RASSI 
and i .  MORRO: Nuovo Cimento B, 9, 321 (1972). 
(13) L. LA~IDAtl and E. LI~'e~IITZ. M6canique des ]luides (Moscow, 1971). 
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The s ta r t ing  point  for the der iva t ion  of the  K d V  equat ion is the funda-  
men ta l  wave  sat isfying ~ = -  Co~. On the  basis of this observat ion,  BEN- 
JA3~IN, B02iA and MAHONu suggested to replace the  t e r m  , 1 ~  b y  --~x~t/Co; 
the  result ing equat ion  is 

3 Co 1 hZ 
(3A) W + Co'J~ + ~ ~ o ~ - -  ~ o ~  = 0 �9 

Bo th  K d V  and  BBM equations involve only first-order der ivat ives  with respect  
to t ime. Then,  as r emarked  b y  JEFFREY, this implies the  unpleasan t  fea ture  
t h a t  the  specification of bo th  ~ and  ~t ~s initial da ta  is not  allowed. Fur the r -  
more,  the  l inearized coun te rpar t  of (3.1) yields the dispersion relat ion 

First ,  

6co k 
~'~ = 6 § h~ k ~ " 

CD 
6 C o  

6 q -h~k  2 ' 

6 - -  h2ok 2 
c~ = 6c0 i6 q- ho 2 k2) 2 

and  hence %, c - -~  0 as k -~ c~. Second, 

1 2 3 r ~ Cok-- ~Cohok 

when k is small. Third,  while c, does not  change its sign, c does. 
Bo th  to avoid the  change of sign of c and  to make  it  possible the  assign- 

m e n t  of ~, ~ as initial  data ,  JEFFREY proposed to use twice the  approx ima t ion  

~]t=--co~]~, thus obta ining the J equat ion (1~) 

(3.2) 
2 

3 Co I h~o~Txtt �9 

The linearized version of (3.2) yields 

Hence,  

el) = C 0 

(9 q- 6h~k~) � 8 9  3 
o~ = Co h~ k 

(9 ~- 6h~k2) ~ -  3 

h~k~ 
- 3 c  (9 +~6h~ 

cg-- Oh~k2(9q_6h~k~)�89 

whence it  follows a t  once t h a t  c and  cg do not  change sign while cp, c -~ 0 

(14) Called TRLW equation by JEFFREY. 
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as k -> ~ .  Moreover, 

1 2 3 
~-- cok -- ~Cohok 

when k is small. 
At  this stage the J equation could seem a model adequate to describe the 

propaga t ion  of small bu t  finite-amplitude water  waves. The following remarks 
aim to shed light on the physical  significance of BBM and J equations. First, 

a direct deduction of (3.1) or (3.2), like tha t  given for the KdV equation, 
should provide their immediate physical interpretation. Unfortunately,  to 
our mind such deductions are not  feasible. Indeed,  the two-parameter  trans- 
format ion 

= ~ ( x - -  Co t) , 

applied to the system (2.5), Mlows reasonable solutions only if b = 0, thus 

leading to the K d V  equation. 
Second, as a mat te r  of fact, the KdV equation (2.10) is GMileian invariant, 

tha t  is to say invariant  under the t ransformat ion (15) 

(3.3) 

x - ~ x - -  V t ,  

t - + t ,  

~ --> ~ . 

This is not  the case for BBM and J equations. 
As a final remark,  we conjecture tha t  the previous features of BBM and J 

equations are closely connected with one another.  Indeed,  (2.7) privileges 
the quant i ty  x - - C o t  and this is meaningful only if the resulting equation is 

Galileian invariant.  Furthermore,  the nonderivat ion of BBM and J equations 
from G ~  equations is hardly  surprising, since the GN model relies heavily on 
the GMileian invariance (1,7). 

4. - Preliminary topics about variational principles in hydrodynamics. 

The search for variat ional  principles in hydrodynamics  is essentially sug- 
gested by a twofold argument.  First,  as happens in other fields, the exist- 

ence of a variat ional  principle, besides resulting in a unification of the subject, 

(15) Galileian invariance is considered also by R. M. MIURA: S l A M  Rev., 18, 412 (1976) 
through the transformation x - - ~ x - - V t ,  t-+t, V- -~+2hoV/3co ,  which seems to be 
suggested by formal reasons. On the contrary, (3.3) is motivated by the fact that the 
physical meaning of the scalar quantity V is preserved only if its value is the same in all 
Galileian frames. 
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m a y  lead to new methods  for solving the problem.  Second, in connection wi th  
nonlinear wave  theories it  is desirable to have  a technique for dist inguishing 
be tween  those wave  equat ions t h a t  allow for dissipation and  those t h a t  do 
not.  On the  other  hand,  it  is cus tomary  to consider conserva t ive  (or nondis- 
sipative) those wave  sys tems which a d m i t  a Lagrangian  density,  evert if no t  
in the  sense of classical mechanics,  thus mo t iva t i ng  the  a fore-ment ioned  search. 

Unfor tuna te ly ,  we are still short  of a general  rout ine me thod  for producing 
var ia t ional  principles. The easiest way  to see how special the  known var ia-  
t ional  formulat ions  are is to examine  t h e m  as we do in the  nex t  section. Here ,  
instead,  we outline an a l t e rna t ive  deduct ion of s t andard  equat ions for wa te r  
waves  b y  emphasiz ing the  role p layed  b y  the  free bounda ry  of the  fluid in the  
var ia t iona l  formulat ion.  

On assuming the i r ro ta t ional i ty  of the  veloci ty  field and  denot ing b y  
~b(x, t) the  veloci ty  potent ia l ,  t h a t  is V(x,  t) = V~b q- O~e3, ~ var ia t iona l  prin-  
ciple for a fluid wi th  a free surface m a y  be wr i t ten  in the  fo rm (~,~e) 

(4.1) ~J(O) = 0 ,  J(r = f  + + d dx dy dr, 
R - -h  

where ~7 -~ ~(x, y, t), h - - - - -  h(x, y) and  /~ is the  cylindrical  region D •  tz]. 
Borrowing f rom Hami l ton ' s  principle in classical mechanics  the  unknown func- 
t ion ~ is assumed to be  fixed a t  t imes tl, t~. On the other  hand,  owing to 
the  presence of a free bounda ry  a t  z = V, ~1 too is an  unknown funct ion for  
the  p rob lem a t  hand.  Thus we are led to consider the  differential ~J  arising 

f rom a change of ~b, name ly  

r ---> q5 -}- Z ,  z(tl) = z(tz) = 0 ,  

and  a change of the  domain,  t h a t  is 

X ----~ X --~- g e 3 ,  g = O  at  z = - - h .  

As a consequence ~J  takes  the  fo rm (17) 

(le) j .  C. LUxE: J. ~luid Mech., 27, 395 (1967). 
(1~) I. M. GE~FAND and S. V. FOM~N: Calculus o] Variations, subsecf. 37.4 (Englewood 
Cliffs, N . J . ,  1963). 

24 - II  N u o v o  C i m e n t o  C. 
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where 8/2 is the smooth boundary  of .(2 ~ R X[--  h, ,1] and (n, v) is the out- 
ward unit  normal  to 8/2. ~irst ,  if Z = 0 und ~ ~ 0 a t  8/2, 8J  ---- 0 yields the 
Euler-Lagrange equation 

(4.2) V2O q- ~ - - ~  0 .  

Second, the choice Z ~ 0 at  8/2 gives 

q~ q- ~(V~) 2 4- ~ ~ + g z = O  ( 4 . 3 )  

Then we have 

at  z - - ~ .  

Observe tha t  Z is required to vanish a t  the surfaces t ~ tl, t ---- t2; thus it is 
wor th  introducing the subset 2: obtained from 8/2 by  removing such surfaces. 

I f  we now make use of the arbitrariness of g at  2:, the condition ~J~-0 provides 

(4.4) (V~ if- r  q- v = 0 at  X .  

I n  particular,  a t  z ~--U we have 

n = ~ ( - -  V V  § e3) , v = - -  ~ V t ,  = {(vn) ~ + v~ + 1}-�89 

and hence (4.4) reduces to 

(4.5) ~b--  ~t--  V~ .V~O ---- 0 at  z = ~ .  

Analogously, at  z = -- h we have n =/~(Vh ~- e~), v = 0, # = {(Vhp q- 1} -�89 
and then (4.4) simplifies to 

(4.6) ~ ~- Vh-V~b = 0 at  z ~- -- h .  

To sum up, we have seen tha t  the variat ional  principle (4.1) leads to the well- 
known equation of mot ion (4.2) and boundary  conditions (4.3), (4.5), (4.6) for 
the water  wave problem. 

In  so doing we have not  exploited the boundary  condition (4.4) when referred 
to the subset 2: r obtained from 2: by  deleting the surfaces z----7, z = -  h. 

This is because the fluid is usually considered to have infinite extension with 
respect to the co-ordinates x, y. I f  such is not the case, in following along the 
above procedure, (4.4) delivers the r ight  boundary  condition at  2:t. 

As is well known, the full set of equations of mot ion is unwieldy in practical 

problems. This in tu rn  confines the interest of the variat ional  formulat ion (4.1) 
to theoretical  frameworks. On the other hand, several approximate  theories 
for describing the fluid motion are now available. Thus the problem is to find, 
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if possible, their  var ia t ional  counterparts .  This subject  is examined in the 
nex t  sections. 

5. - Some examples  o f  variational  principles. 

This section deals with the var ia t ional  principles corresponding to the 
models outl ined in sect. 2, 3. As they  stand, some systems of differential 
equations seem not  to follow from variat ional  principles. Yet,  as happens 
also in other  contexts ,  a nontr ivial  change of unknown functions makes the  
variat ional  formulat ion immediate.  Note  t h a t  such ad hoe procedures stress 
once again the lack of systematic  methods  of finding var ia t ional  principles 
in hydrodynamics .  

Shallow-water theory. Consider the Lagrangian density 

/s = (7 + h)(qSt + �89 -{- lg~2,  

where the unknown functions are the  profile ~ and the veloci ty  potent ia l  O. 
The corresponding Euler-Lagrange equat ions are 

~l: q~t-]- �89 g~ = O , 

r ~+V.{(~+h)  Vr 

Boussinesq equation. From the Lagrangian densi ty  

1 2 1 2 .Lf = 07 -[- h)(q~t Jr �89 + ~g~ -- ~hoV ~ 

we get the Euler-Lagrange equations 

~ h o ~ t t  ~-- 0 , 

o: w+V'{(V+ho) Vr 

Korteweg-de Vries equation. I f  we let 0~ = 3~//2h0, the Lagrangian densi ty 

1 1 lw -3 1 
= ~ O~Ot + ~ coO~ + ~eoO~ + coho~(Z ~ + 2Z~0~) 

in the unknown functions 0, Z allows us to write the Euler-Lagrange equations 

Z: Z--  0~ = 0 ,  

0 : 0~,~ -[- coO~ 4- 1 coOkOutS- ~CohoZ~ = 0 ,  

which are equivalent  to KdV equation. 
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Jeffrey equation. I f  we let  0~ = 3~/2ho, it follows a t  once t ha t  the  Euler- 
Lagrange  equations corresponding to 

are 

1 ~ ~ h~ 
1 leoO~+~coO~ + _(z+2z~O~) s = -~ 0~0~ + ~ Co 

O: 

Z --  0~ = 0 ,  

1 h~ Z~t = 0 0~ + eoO~ + coO~O~ + ~ e--o 

The var ia t iona l  principle for J equat ion is so established. 
The above  principles are referred to i r rota t ional  mot ions ;  nonzero vor t ic i ty  

mot ions  are considered in the  nex t  section in conjunct ion with the G:N model. 

6. - Lin- l ike  variat ional  principle for Green and Naghdi's  equations.  

When  looking for var ia t ional  formulat ions  in con t inuum physics we have  
pre l iminar ly  to decide whether  the  mot ion  is described through Lagrangian  or 
Euler ian  co-ordinates.  I n  fluid dynamics  the  Euler ian description appears  to 
be  preferable,  though fur ther  difficulties arise out jus t  in connection with  varia-  
t ional  problems.  I n  fact ,  the  crucial difference is t ha t  in the  Lagrangian  
descript ion the  mot ion  is specified th rough  the posit ion of the particles,  whereas 
in the  Euler ian  descript ion it is represented  by  the  veloci ty  field. Thus,  while 
a na tu ra l  analogy with  part icle  mechanics is profi table in the Lagrangian  
description, such an analogy is not  avai lable  in the  Euler ian description. 
To overcome this difficulty LIST (is) poin ted  out t h a t  a particlelike informa- 
t ion on the  mot ion m a y  be in t roduced through the obvious const ra in t  

a(x, t) being the  Lagrang ian  label of the  part icle  in x a t  the t ime t. Accounting 
also for the  const ra in t  re la ted to the  mass  conservat ion,  Lin 's  procedure leads 
to the  equations of mot ion  as the  Clebsch equations (19). Such a procedure 
is here appl ied in connection with the  GIq model. 

Roughly  speaking, the  column s t ruc ture  of the GN model  allows us to 
imagine the  fluid mot ion  as result ing f rom the horizontal  mot ion of the  columns 
and  the  ver t ical  mot ion  inside the columns themselves.  Accordingly, i t  is 

(is) C. C. LI•: l~endiconti S.I.F., Course XXI  (New York, N. Y., 1963). 
(19) H. LAMB: Hydrodynamics, VI ed. (C~mbridge, 1932), ~rt. 166. 



WATER WAu THEORIES AND VAI%IATIONAL PRINCIPLES 3 ~ 5  

convenient to consider an equivalent bidimensional layer obtained by shrinking 
the fluid vertically. This is made mathematically precise in the following way. 
Let ~ ~ ~? be the density of the layer described by the equation 

z~ § V. (zv) = 0 ,  

zvt  § ~(v .V)v  = - -  V H  § p~Vv ~- P V h ,  

which are an immediate consequence of (2.1h.2. On using the obvious identity 

(v .V)v = V(�89 ~) § (VAv)Av 

and appealing 

we find that  

to the Clebsch potential in the form 

v = V z A - # V a ,  

v~ -4- (VAv)Av = V(Z~ ~-/,a,) @ # Va-- a V#. 

Under the assumption fi = 0, d = 0, we can write 

~(Z~ ~- #a~ + lv~) = p ,  

where p = -- VH @ paV~ @ P Vh. A direct integration yields 

pdr  

The previous scheme is unified by the following variational principle: 

tz 

~ f  f ( l z v ~ - -  E @ Z{~,-~ V'(gv)} + a{(z#)~+ V . ( ~ # v ) } ) d r d t = O ,  

E being defined by 

_ ~ p . d r  
E , =  3 ~ " 

Indeed, the Euler-Lagrange equations are 

v: v = V z ~ # V a  , 

u: � 8 9  

X: ~ ~- V" (zv) ~ 0 ,  

#: d = O ,  

a: # = 0 .  
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T h e y  reduce  to  the  co r re spond ing  ones g i ve n  above  t h r o u g h  s t r a igh t fo rward  

a lgebra .  

The  m o t i o n  of the  l aye r  is so comple t e ly  charac ter ized .  Of course, to 

d e t e r m i n e  the  a c t u a l  m o t i o n  of the  fluid, use m u s t  be  done  of eqs. (2.1)~.2. 

The  research  r e p o r t e d  in th is  ar t ic le  was  pe r fo rmed  in  co l l abora t ion  w i t h  

the  Labo ra to r i o  per  la M a t e m a t i c a  A p p l i c a t a  - CNI~, G e n o v a  in  connec t i on  

w i t h  the  p ro j ec t  (~ Conservaz iono  del suolo ~), subpro j ec t  (~ D i n a m i c a  dei Li to-  

ra l i  ~>. 

�9 R I A S S U N T 0  

Si presenta una ~raCtazione compatt~ delle pifi note equazioni che descrivono la propa- 
gazione della onde d'acqua. Un primo schema riunisce le equazioni dell 'acqua bassa, 
di Boussinesq e di Kor~eweg-de Vries come casi par~icolari della equazioni di Green 
e Naghdi. Per contro, l 'equazione di Benjamin-Bona-Mahony e quella di Jeffrey non 
rientrano in tale schema: ci6 g at~ribuito al facto che esse non sono invarianfi  per 
trasformazioni di Galileo. Un secondo schema metre in rilievo le diverse caratterisfiche 
dei vari modelli ~ramite le eorrispondenfi formulazioni variazionali. I n  questo contes~o 
si fornisce un principio variazionale per le equazioni di Green e Naghdi. 

TeopH~ BO]]~IHblX BOYlH H BapHauHOHHb~e ItpHHHHllbI. 

Pe3mMe (*). - -  IIpe~Jmraerc~ e)~mme OmlCarme Mo~e~e~ )l~n pacnpocTparmnn~ BO~nH],~X 
BonrL IIepBa~ cxeMa onncbmaeT ypaBnerm~ Menro~ BO~bt, ypaB~erm~ ByCCHH9 r~ 
ypaB~em~e KopTeBera-~e BpHca, r a t  ~acTm, m cny~ar~ ypaBI~erm~ FpnHa rt Har~rL 
Ypaauerm~ BeH~aMn~a-Bo~a-Maxonn H )]~eqbpH i~e MOryT 61,IT~ rtoay~tem, t B TarO~ 
CxeMe: aTO npnm~csmaeTc~ neranuneeBo~ Hrmapaa~THOCT~ 3T~4X ypaarmun~. BTopaa 
cxeMa npn~aeT oco6oe 3rta~erme OCO6emtoCTaM paami~Im, ix Mo~ene~ IIocpe~CTBOM 
COOTBeTCTByIom~ttX aapaat~nomxsix qbopMynHpoBOK. B 3TOM rOrtTe~cTe ycTarmnanBaeTc~ 
~apHa~noa~i~  npnHt~rm ~n~t ypa~aerm~ Fpnua  rt HarsH. 

(*) llepeaeOeuo peOatttttte~. 


