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Abstract  

A geometrical interpretation of the shear-free condition, required by Robinson's theorem, is 
given. In particular it is proved that the shear-free condition for a (geodesic) null congruence 
is necessary and sufficient in order that the null conditions be preserved along the rays. 

It is well known that Robinson's theorem [1] gives a simple characterization 
of a null electromagnetic field in terms of the associated null congruence. It 
states explicitly [2, p. 345] that "a congruence ofnuU curves is geodesic and 
shearfree if and only if the associated family of null bivectors includes a solution 
of the sourcefree Maxwell's equations." 

The physical and geometrical meaning of the geodesic condition has been 
extensively studied in the literature [3, pp. 343-345].  The main results of  this 
work show that (real) photons travel only along null geodesics. The geometrical 
and physical role of the shear-free condition, however, is less obvious. The pur- 
pose of this note is to show that the shear-free condition guarantees that the 
null conditions [2, p. 273; 3, p. 327] 

E ' H = E  2 - H  ~ = 0  (1) 

are preserved along the null rays. 

This result provides a simple scheme that characterizes the different roles 
played by the geodetic and shear-free conditions (usually treated on the same 
footing; see, e.g., [2, p. 344] in the formulation of Robinson's theorem. In 

1 Lavoro eseguito nell'ambito dell'attivit~ del Gruppo Nazionale per la Fisica Matematica 
del C.N.R. 
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fact, we have the geodesic condition as a dynamical consequence of Maxwell's 
equations [5], secondly, on a purely geometrical ground, the shear-free condi- 
tion implies the null condition (1). 

The formal machinery to prove this interpretation is as follows. Let gi! = 
F ij + i *F ii be a complex electromagnetic tensor. In the null case, the algebraic 
structure of gii is [2, p. 318, p. 342] 

~i] = k iM I _ k]M i (2) 

wi(h kiki = kiMi = MiMi = O. Moreover, for every choice of a physical frame of 
reference [6-9],  it is possible to set [10] 

M =  E + itt  (3) 

E , H  being, respectively, the relative electric and magnetic fields [5]. A canon- 
ical null tetrad {k, n, m, ~ } [2], associated with the electromagnetic field, is 
obtained by letting 

m =M/(MiMi) (4) 

and choosing the real null vector n such that equation (A. 1) (see Appendix) is 
identically verified. 

We now observe that Maxwell's equation ~q;i = ( kiMj - klMi);J = 0 may be 
written in the form 

[k,M] = x k  - 20M (5) 

where [ ,  ] indicates the usual Lie bracket, and • =Mi. i ,  0 = �89  Let  v be the 
parameter along the null rays such that k = ~/3 o; then~ setting M'dr exp 
(2fOdo)M, equation (5) reads 

r  

[k,M] = exp (2fOdv)• (6) 
A 

Comparison of equation (6) with equation (A.3) shows that M is a connection 
vector. If we set 

A A d O  /", 

/~ dCRe(M) = exp (2yOdo)E H ~2 Im(M) = exp (2fOdo)H (7) 

the null conditions (1) read 

^2 =0 (8) 

Finally, as/~ and H are connection vectors, satisfying equation (A.6) by the 
definition (4), Lemma A.1 implies that equation (8) is preserved along the null 
rays if and only if the congruence is shear-free. 

This result yields the required interpretation. 
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Appendix 

Let {k, n, m, ~ }  be a null tetrad with k tangent to a null geodesic congru- 
ence =, parametrized with a parameter o. The only nonzero scalar products are 2 

kini  = - m i ~ l i  = 1 (A.1) 

It is well known that we can expand the quantity k i ;j in terms of  the null tetrad 
as follows [2 ,p .  399; 11] : 

ki;] = (T + "T)kikj + (e + -e )kin j - (or +-~)kim j - ('ff + ~)kim j - Ymikj + -omim j 

+ pmim j - r ~ i k  i + p~ imj  + o ~ i ~  j (A.2) 

where a is the shear, p = - 0 + ico is the complex dilatation, and e + ~" is zero if 
and only if v is the affine parameter (notations are as in Ref. [2, 11 ] ). By defi- 
nition, a connection vector 3 ~ satisfies [2, p. 264; 12] 

[k, ~] = ftc (a .3)  

for some function f ,  and is defined up to a gauge, namely, 

~ ~ + gk (A.4) 

g being a function. Equation (A.3) and the conditions kiki = 0, ki;jk j = (e + 
-()k i, yield 

~(ki~i)  (e + ~-)~i~i (A.5) 

so that ki f i  = 0 for some v implies kiwi = 0 identically. Finally, it is possible to 
use the gauge (A.4) to put f in i = 0 identically. With these assumptions, we have 
the following: 

LemmaA.1.  Let {~'(a)} (A = 1,2)  be two connection vectors satisfying 

i k = i n ~'(A) i ~'(.4) i = 0  (A.6) 

identically. Then the congruence = is shear-free if and only if it is possible 
to define two mutually orthogonal differentiable connection vectors with 
the same length along =. 

Proof. Equation (A.2), (A.3), and (A.6) yield 

D 
D-o (~i(A)~(B)i) = 2(omimj + -Smim/ + Pmimj + -Pmim/)~ (i(A)~J) (B) (A.7) 

where the parentheses denote symmetrization. 

2The metric has the signature -2. 
aFor a more detailed discussion of the kinematical and geometrical meaning of connection 
vectors, see, e.g., [12]. 



782 BAMPI 

Setting ~'(.4) = /a (a )m + ~(A) ~ ,  equation (A.7) gives 

D i ~(~ (1)~(~)i) = 2(ou(1)u(~)  + ~ ( ~ ) ~ ( : ) )  - 2o ~i(~)~(~)i (A.8a) 

D 
O-o (1~(1)12 - 1~(2)12) = 200a(1)2 -/~(2)~) + ~(~(1)2 - ~(2)2) - 20(1~(1)12 

- 1~'(2 )12) (A.8b) 

Let = be shearfree. Fixed any point on a line a E =, we consider two connection 
vectors such that at P fi(1 ) ~(2)ile = 0 and (l~(1)l 2 - 1~'(2)12)e = 0. Then eqs. 
(A.8a, b) imply that  these conditions are preserved along the null rays. On the 
contrary, if  one assumes that there exist two mutually orthogonal connection 
vectors with the same length, the system (A.8a, b) becomes an algebraic system 
for o (notice that  o has exactly two degrees of  freedom). The condition of  linear 
independence of  ~'(1 ) and ~'(~) [namely/a(l ) ~(z) - ~(1)/a(2) :/= 0] implies that the 
determinant o f  this algebraic system does not vanish, so we have only the trivial 
solution o = 0. Q.E.D. 
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